
AFRL-SN-RS-TR-1999-94 
Final Technical Report 
May 1999 

THE EIGENCANCELER: SPACE TIME ADAPTIVE 
RADAR BY EIGENANALYSIS METHODS 

New Jersey Institute of Technology 

Alexander M. Haimovich and Tareq F. Ayoub 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 

19990719 123 

WTC QUALITY INSPECTED 4 

AIR FORCE RESEARCH LABORATORY 
SENSORS DIRECTORATE 
ROME RESEARCH SITE 

ROME, NEW YORK 



This report has been reviewed by the Air Force Research Laboratory, Information 
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical 
Information Service (NTIS). At NTIS it will be releasable to the general public, 
including foreign nations. 

AFRL-SN-RS-TR-1999-94 has been reviewed and is approved for publication. 

APPROVED: 
MARK L. PUGH 
Project Engineer 

FOR THE DIRECTOR: 

ROBERT G. POLCE, Acting Chief 
Rome Operations Office 
Sensors Directorate 

If your address has changed or if you wish to be removed from the Air Force Research 
Laboratory Rome Research Site mailing list, or if the addressee is no longer employed by 
your organization, please notify AFRL/SNRT, 26 Electronic Parkway, Rome, NY 13441- 
4514. This will assist us in maintaining a current mailing list. 

Do not return copies of this report unless contractual obligations or notices on a specific 
document require that it be returned. 



REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 0704-0188 

1. AGENCY USE ONLY (Lean blank} 2. REPORT DATE 

 May 1999 

3. REPORT TYPE AND DATES COVERED 

Final       Jul 94 - Nov 97^ 

4. TITLE AND SUBTITLE       — 
THE EIGENCANCELER:  SPACE TIME ADAPTIVE RADAR BY 
EIGENANALYSIS METHODS 

6. AUTHOR(S) 

Alexander M. Haimovich and Tareq F. Ayoub 

7. PERFORMING ORGANIZATION NAMEISI AND ADDRESSlESI 

New Jersey Institute of Technology 
323 Martin Luther King Blvd. 
Newark NJ 07102-1982 

5. FUNDING NUMBERS 

C    -    F30602-94-1-0012 
PE   -    62702F 
PR   -    4600 
TA   -    AO 
WU -    A9 

8. PERFORMING ORGANIZATION 
REPORT NUMBER 

N/A 

9. SPONSORING/MONITORING AGENCY NAMEIS) AND ADDRESSIES) 

Air Force Research Laboratory/SNRT 
26 Electronic Parkway 
Rome NY 13441-4514 

10. SPONSORING/MONITORING 
AGENCY REPORT NUMBER 

AFRL-SN-RS-TR-1999-94 

11. SUPPLEMENTARY NOTES 

Air Force Research Laboratory Project Engineer: Mark L. Pugh/SNRT/(315) 330-7684 

12l. DISTRIBUTION AVAILABILITY STATEMENT 

Approved for public release; distribution unlimited. 

12b. DISTRIBUTION CODE 

I £2£E32£Z* applications, adaptive antennas provide for the detection of small targets in severe clutter 
environments. Adaptive antennas are currently being considered for the design of next generation surveillance platforms 
The radar problem is two-dimensional with radar returns being a function of both angle and Doppler. Space-Tune Adaptive 
Processing (STAP) is required for rejection of interferences in the space-time domains. To make STAP feasible for 
incorporation into future systems, low complexity algorithms are required. The space-time radar problem is well suited .» 
the application of techniques that take advantage of the low-rank properties associated with the interference in such radars. 
The Eigencanceler is an interference cancellation method based on the spectral decomposition (eigenanalysis) of the 
space-time covariance matrix. The linear space spanned by the columns of the space-time covanance matrix is formed by 
fce union of the algebraic spaces of the interference and the noise. The Eigencanceler's weight vector is designed to lie in 
Z rise subspace and to provide a prescribed gain to the desired signal. Thus significant computational savings; are^realized 
since a Weiner filter requires a matrix inversion, while the eigencanceler is implemented by computing only a limited 

number of interference eigenvectors. 

H. SUBJECT TERMS 

Space-Time Adaptive Processing, Eigenanalysis, Signal Processing 

15. NUMBER OF PAGES 

132 

17. SECURITY CLASSIFICATION 
OF REPORT 

UNCLASSIFIED 

18. SECURITY CLASSIFICATION 
OF THIS PAGE 

UNCLASSIFIED 

19. SECURITY CLASSIFICATION 
OF ABSTRACT 

UNCLASSIFIED 

16. PRICE CODE 

20. LIMIYAYIöN ÖP 
ABSTRACT 

 UL 
" Standard form 298IRev. 2-83) [ik 



EXECUTIVE SUMMARY 

This report summarizes the work on "The Eigencanceler: Space-Time Adaptive Radar by 
Eigenanalysis Methods" carried out at the New Jersey Institute of Technology from 6/94 to 
9/97. The main contribution of this work was to develop and study an adaptive radar signal 
processing method referred to as eigencanceler. In airborne surveillance radar applications, 
adaptive antennas provide for the detection of small targets in severe clutter environments. 
Adaptive antenna arrays are currently being considered for the design of the next generation 
surveillance platforms. The radar problem is two-dimensional with radar returns being a 
function of both angle and Doppler. Space-time adaptive processing (STAP) is required 
for rejection of interferences in the space-time domains. To make STAP feasible for incor- 
poration in future systems, low complexity algorithms are required. The space-time radar 
problem is well suited to the application of techniques that take advantage of low-rank 
property associated with the interference in such radars. 
The eigencanceler is an interference cancellation method based on the spectral decompo- 
sition (eigenanalysis) of the space-time covariance matrix. The linear space spanned by the 
columns of the space-time covariance matrix is formed by the union of the algebraic spaces 
of the interference and the noise. The eigencanceler's weight vector is designed to lie in 
the noise subspace, and to provide a prescribed gain to the desired signal. Thus significant 
computational savings are realized since a Wiener filter requireds a matrix inversion, while 
the eigencanceler is implemented by computing only a limited number of eigenvectors (inter- 
ference eigenvectors). 
Application of Wiener filtering required knowledge of the true space-time covariance matrix. 
In radar applications, the space-time covariance matrix (including contributions of jammers, 
clutter, and noise) cannot be known a priori, hence it needs to be estimated from the obser- 
vations. The sample matrix inversion method (SMI) consists of substituting the estimated 
covariance matrix for the true coavariance matrix in the Wienre filter. It is well known that 
to achieve an output signal-to-noise ratio (SNR) within 3 dB of the optimal, the number of 
independent space-time snapshots required is K = 2iV, where N is the dimensionality of the 
space-time array. While preserving the linear architecture of the radar detector, the SMI 
detector has a number of drawbacks: (1) it is not optimal for detection performance, (2) it 
has slow convergence for large dimensionallity N (i.e., large number of snapshots required), 
(3) it is sensitive to calibration errors, (4) it is not CFAR. In this report it is shown that the 
eigencanceler addresses many of the SMI's deficiencies. 
The following specific contributions of this report are noted: 

1. Formulation of the eigencanceler method [1, 2]. The eigencancler provides better 
detection performance in cases of limited data support (low number of snapshots for 
coavariance matrix estimation). It is shown that the number of snapshots required is 
K = 2r, where r is the rank of the interference subspace. For a calibrated space-time 
array, r is usually much smaller than the array dimensionallity N. Alternatively, for 
the same number of snapshots, the eigencanceler delivers much better performance. 

2. Development of the theory of the eigencanceler. Radar performance is commonly 
measured in terms of detection and false alarm probabilities. In turn, those are 
determined by the, so-called, conditioned signal-to-noise ratio (CSNR). The statistical 
characterization of the SMI CSNR has been known for some time. In this report 
the probability density function of the eigencanceler is developed. This work has 
been also published in a recent journal publication [3]. The development is based on 
the asymptotic distribution of the principal components of the covariance matrix. It 
is shown that, unlike the SMI method, the eigencanceler yields a conditioned SNR 
distribution that is dependent on the covariance matrix. Several covariance matrix 
independent approximations of the distribution are developed for the large interference- 
to-noise case. 



3. Performance analysis of the eigencanceler. This work is significant in that several 
adaptive methods were evaluated using experimental data supplied by the Air Force 
Research Laboratory (AFRL). The performance of the eigenanalysis-based detector 
is analyzed with respect to convergence rate and robustness to calibration errors. 
Analytical expressions are developed for receiver operating curves when the clutter 
signal environment is assumed to be Gaussian. Simulation results are provided 
to corroborate the theoretical analysis. Examples of experimental data from the 
Mountaintop dataset are used to illustrate the higher convergence rate and increased 
robustness of the eigenanalysis method. In the course of this work various techniques 
had to be developed to enable the utilization of the experimental data, such as 
calibrations and other processes. This work is also reported on in the journal publi- 
cation [4] and conference publications [5, 6]. It is shown, through analysis of the 
Mountaintop dataset, that the SMI method is very sensitive to target leakage in the 
training set. This requires large guard rails around the cell under test. It is shown 
that the eigencanceler is less susceptible to this type of errors. 

4. Other reduced-rank methodss are also studied. These methods' utility is demonstrated 
by simulations in terms of the output signal-to-noise ratio and detection probability. 
It is shown that reduced-rank processing has two opposite effects on the performance: 
increased statistical stability which tends to improve performance, and introduction 
of a bias which lowers the signal-to-noise ratio. Several reduced-rank methods are 
analyzed and compared for both cases of known and unknown covariance matrix. 
While best performance is obtained using transforms based on the eigendecompo- 
sition (data dependent), the loss incurred by the application of fixed transforms (such 
as the discrete cosine transform) is relatively small. The main advantage of fixed 
transforms is the availability of efficient computational procedures for their imple- 
mentation. These findings suggest that reduced-rank methods could facilitate the 
development of practical, real-time STAP technology. This work is also reported on 
in publications [7]. 

5. The application of the eigencanceler to the high pulse repetition frequency (HPRF) 
radar is demonstrated. High pulse repetition frequency radars are employed for 
airborne applications due to their capability to place high closing-rate targets in 
the clutter-free region. The highly ambiguous range returns, may however, cause 
low Doppler targets to compete with near-range strong clutter. It is shown that 
STAP techniques are required to reject the near-range clutter returns which mask 
low Doppler targets. As a result of range ambiguity of the HPRF radar, the sample 
support for estimating the array covariance matrix is limited, leading to an ill- 
conditioned problem. Hence, the traditional SMI technique, if applicable, results in 
poor performance. Reduced rank techniques such as the eigencanceler applied to the 
HPRF airborne STAP problem are shown to perform well in terms of the CSNR and 
probability of detection. This work is also reported on in publications [8, 5]. 

li 
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CHAPTER 1 

INTRODUCTION 

The theory of space-time adaptive processing (STAP) was pioneered by Brennan and Reed 
[9]. They showed that the optimal Neyman-Pearson detector for a known signal vector in 
colored Gaussian noise with a known covariance matrix is linear, i.e., it consists of a linear 
combination of the vector's components.   In practice, the noise (a collective reference to 
background noise+clutter+jammers) covariance matrix is typically not known. The common 
approach is to estimate it from a secondary data set that does not contain the signal of 
interest. In radar, the secondary data may be composed of signals from range cells adjacent 
to the one under observation.  Reed et. al.  suggested the Sample Matrix Inversion (SMI) 
method, in which an estimate is substituted for the noise covariance matrix expression in 
the linear detector [10]. They developed an expression for the density of the SNR loss with 
respect to the optimal case and showed that if the signal vector dimension is N, the number 
of samples required to achieve performance within 3 dB of the optimal, is approximately 
K = 2N. This convergence has the remarkable property of being independent from the 
true noise covariance matrix.  Other authors have analyzed the performance of the linear 
detector with estimated covariance matrix [11], [12], and [13]. While preserving the linear 
architecture of the detector, the SMI detector has a number of drawbacks:   (1) it is not 
optimal for detection performance, (2) it has slow convergence for large N, (3) it is sensitive 
to calibration errors, and (4) it is not CFAR. Subsequent work addressed some of these 
concerns. A detector for a signal vector with unknown amplitude and in unknown colored 
noise was derived by Kelly from a generalized likelihood ratio (GLR) test [14]. Unfortunately, 
the GLR-based detector is more complex and has convergence properties similar to the 
SMI detector.   The SMI method was shown to be sensitive to calibration errors [15, 16]. 
Various remedies have been suggested, for example, [17, 18], which reduce sensitivity to 
calibration errors at the expense of some added complexity. CFAR modifications of the SMI 
detector were suggested and analyzed in [19] and [20]. While deficiencies of the SMI detector 
have been addressed on an individual basis, a comprehensive approach for the design of a 
linear detector with fast convergence, increased robustness, and CFAR capability, has been 
lacking.   Most of these desired features can be achieved in the case of STAP radar, by a 
linear eigenanalysis-based detector. Such a detector is derived from partitioning the signal 
space into interference and noise subspaces and computing a weight vector in the noise 
subspace.  The interference subspace contains the clutter contributions.  Two forms of the 
eigenanalysis-based detector have been referred to as the eigencanceler [21, 1] and the PCI 
method in [22]. The eigencanceler is a modification of the minimum variance beamformer. 
The minimum variance beamformer minimizes the array output subject to a set of linear 
constraints [23]. The eigencanceler produces the minimum norm weight vector meeting the 
set of linear constraints, and subject to the additional constraint of orthogonality to the 
interference subspace [24]. The PCI is derived as a linear detector of data from which the 
interference has been removed [22].  In the case of a single steering vector constraint, the 
two methods provide similar solutions. In [1] we show that the space-time clutter covariance 
matrix for a uniform array and fixed PRF is essentially low rank, due to the inherent 
oversampling nature of the STAP architecture. Hence, the space-time radar problem is well 



suited to the application of techniques that take advantage of the low-rank property. The 
eigenanalysis-based method has been shown to have a faster convergence rate than the SMI 
method. Specifically, it has been shown that the number of samples required for an average 
loss of 3 dB with respect to the optimal detector is 2r, where r is the interference space rank 
[25, 1]. This finding is particularly significant when r < JV, which turns out to be the case 
for a typical space-time radar. 

In this report, we describe various adaptive radar techniques and discuss their performance 
in comparison with reduced rank techniques, mainly the eigencanceler. Our interest in 
those methods arises since it has been shown that when the interference is contained within 
a subspace of the signal space, and the interference+noise covariance matrix is estimated 
from a dataset with limited support, reduced-rank methods actually outperform full-rank 
adaptive processing. This is explained by the presence, in addition to thermal noise effects, of 
errors resulting from the estimation process. Reduced-rank processing suppresses estimation 
errors at the cost of a bias in the SNR. The net effect, however, is a significant performance 
improvement for cases when the interference may be modeled as low-rank. Reduced-rank 
methods are clearly important for STAP radar, where a large number of degrees of freedom 
may be available. 

This report is organized as follows: Chapter 2 presents the signal model that will be used 
through this work and also presents some background into adaptive processing. Chapter 
3 introduces the the Eigencanceler and discusses its weight vector. Chapter 4 has the 
derivation of the distribution of the conditioned signal-to-noise ratio (CSNR) for the eigen- 
canceler as a performance measure. A performance comparison between the eigencanceler 
and full-rank adaptive radar techniques is given in Chapters 5 and 6. The eigencanceler's 
performance is compared with other reduced-rank techniques in Chapter 7. In Chapter 8, 
the eigencanceler is applied to high pulse repetition frequency (HPRF) airborne radar. 



CHAPTER 2 

SIGNAL ENVIRONMENT 

In this chapter, the mathematical model for the type of signals addressed in the report 
is presented. The optimum and linearly constrained weight vectors are introduced, and 
their deficiencies are discussed. The following notation is adopted: boldface lower case 
letters denote vectors, boldface upper case letters denote matrices, the superscript H denotes 

Hermitian transpose. 

2.1    Signal Model 
Consider a space-time array with Ns antennas uniformly spaced and a Nt pulse coherent 
pulse interval (CPI) as shown in Figure 2.1. The array is side-looking, i.e., its axis is parallel 
to the flight axis. The complex envelope of the signal received at the array from a point 

source, is given by the vector ss = {l,... ,e^N^uf, where u is the normalized spatial 

frequency given by 
u = ^-dsm9 (2-1) 

A 

and d, A, and 9 are the inter-element spacing, wavelength and angle of arrival, respectively. 
The complex envelope sampled at the first array element is represented by the vector st = 

(l,..., e
j(-Ns~1)v)  , where v is the normalized Doppler frequency 

v = ^L (2.2) 
A/r- 

and vr and fr are the radar-target radial velocity and the radar PRF, respectively.   The 
(JV = JVsJVt)-dimensional target vector is defined 

s =—=ss®st (2-3) 

where <g> denotes the Kronecker product. 
Under hypothesis H0 the received signal x consists only of clutter c and noise v contributions: 

x = c + v (2-4) 

where x is assumed a zero-mean, circularly symmetric complex Gaussian random vector 
with covariance matrix R. Under hypothesis Hi, x is given by 

x = as + c + v (2.5) 

where a is a zero-mean, circularly symmetric complex Gaussian random variable with 

variance a\. 
Since the colored noise (colored noise refers to the aggregate of noise+clutter+ 
interferences) covariance matrix is usually not known, an estimate is used. The estimate is 



Figure 2.1 Space-time array structure 

derived from range cells in the vicinity of the tested range cell and is termed "secondary 
data". The secondary data consists of clutter returns and, possibly, other interferences, 
such as jammers. The presence of narrowband jammers does not alter the signal model as 
presented. In the sequel, the terms clutter and interference are used interchangeably. The 
assumption is that the secondary x*, k = 1,..., K, data has the same statistical properties 
as the tested cell under hypothesis model H0. The maximum likelihood estimate of the 
covariance matrix is given by 

K R = ^E^xf 
k=\ 

(2.6) 

2.2    Optimum Radar Signal Processing 
The theory of adaptive radar was established in a series of publications by Brennan, Mallett, 
and Reed [9], [26]. They showed that if a disturbance is a stationary process, and the 
components of the corresponding array vector are distributed jointly Gaussian, then the 
likelihood ratio test for detecting the signal in the presence of the disturbance is maximized 
by a weighted linear combination of the array outputs using the following weight vector: 

w0 = kR   s (2.7) 



where k is a gain constant. Equation (2.7) represents the classical Wiener filter. It can be 
interpreted as a cascade of a whitening filter for the interference, followed by a matched 
filter for the modified (by the whitening operation) useful signal. 
The solution in (2.7) requires a-priori knowledge of the space-time correlation matrix R. 
In practice we work with a finite segment of data from which R is estimated. In this case 
the solution is not optimal anymore, indeed its quality depends on the goodness of the 
correlation matrix estimate. 
The signal environment can be assumed stationary only over short periods, hence the corre- 
lation matrix estimate needs to be continually updated. A number of adaptive procedures 
have been advanced over the years for updating the array weight vector. The Howells- 
Applebaum loop [27] is an analog implementation of the adaptive filter and it makes use of 
the known angle of arrival of the desired signal. The Least Mean Square (LMS) algorithm 
[28] is identical from a mathematical viewpoint to the Howell- Applebaum algorithm, but 
uses a reference signal rather then a steering vector, hence is less suited to radar problems 
and more applicable to communications. Both algorithms are attractive for their simplicity, 
but convergence times are dependent on the spread of the eigenvalues of the correlation 
matrix. Other methods invariably trade away simplicity for speed. The Direct Inversion 
Method (DMI) [10], is fast and independent of eigenvalues, but necessitates order of (M2) 
operations per iteration, where M = dim (R), compared to order of (Af) operations for the 
LMS algorithm. Other adaptive radar approaches are available. For example the sidelobe 
canceler can be implemented using the Linear Prediction Method (LPM) [29]. Application 
of the Levinson-Durbin algorithm to the LPM problem avoids the matrix inversion [30]. 
Closely related to (LPM) is the Maximum Entropy Method (MEM) [31]. 

2.3    The Minimum Variance Beamformer 
Often in radar there is the requirement for some control over the beam pattern in addition 
to cancelling interferences. This requires the introduction of steering point and velocity 
constraints. With the Maximum Likelihood Method (MLM) [32], a filter is designed to pass 
a narrowband signal while rejecting all other signals in an optimal manner. This method 
is closely related to the Minimum Variance Distortionless Response (MVDR) technique for 
spectral estimation. In adaptive beamforming this is known as the Minimum Variance 
Beamformer (MVB) [23]. In some cases the steering point constraint is required over a 
range of angles and Doppler frequencies. One way to force the beamformer response over 
an interval is to prescribe the response at preselected points in space and frequency. The 
optimal weight vector is then obtained by solving the linearly constrained minimization 
problem [33]: 

min    wffRw   subject to   CHw = f (2.8) 
w 

where C is the N x J constraint matrix (N = NaNt), and f is the response vector. The 
weight vector that satisfies (2.8) is given by: 

w 0 = R-1C(CHR"1C)-1f (2.9) 



This solution is optimal in the sense that, if the interference can be represented by a 
stationary process with known 2-nd order statistics (correlation matrix), then it provides 
the minimum output noise power (jammers+clutter+noise) for a constrained desired signal 
response. 

When applied to practical radar situations, the minimum variance beamformer has a number 
of drawbacks which are summarized below: 

1. Data Record Size. The minimum variance weight vector is not optimal if the correlation 
matrix R is not known. The correlation matrix can be estimated using the relation 
given in (2.6). If x is Gaussian then it can be shown that R has a Wishart distribution 
[10] and a reasonable estimate can be obtained when the number of snapshots used 
in the estimate is at least twice as large as dim[R], i.e., K = 2N. Given an estimate 
of R derived from a short data record, it is known that elements R(i,j) provide poor 
estimates for large (i,j) space-time lags [34]. Consequently, the MVB is deficient for 
short data records. 

2. Pattern Robustness. It can be shown that the optimal weight vector of the form 
w0 = &R-1s, can also be written (leaving out constant gain factors) as [35]: 

JV-l 

w0 = s - £ (1 - lA)(q?s)q,- (2.10) 

where A,-'s are the eigenvalues of R indexed in descending order and normalized to the 
smallest eigenvalue A AT. The vector qt is the eigenvector corresponding to Ä;. Equation 
(2.10) indicates that the optimal weight vector consists of weighted eigenvector beams 
subtracted from the quiescent weight vector ds. The quiescent weight vector is just 
the steering vector to the desired signal which can also be viewed as the matched filter 
to a signal at specified angle and frequency. The eigenvector beams subtract from the 
quiescent beam to produce nulls in the directions of interferences. From (2.10) it can 
be seen that all the eigenvectors affect the sidelobes of the space-time pattern. The 
error variance in the pattern is inversely related to the number of samples and to the 
true value of the eigenvalues [36], hence, for short data records the fluctuations of the 
noise eigenvectors between updates can cause large variations in the array pattern. 

3. Computational Complexity. The solution in (2.8) requires a matrix inversion. That 
could be a fairly costly operation which requires an order of (N)3 multiplications. 
Obviously, (N)3 could be large even for moderate number of sensors and filter taps. 
A number of adaptive procedures have been advanced for on-line computation of the 
minimum variance weight vector. Frost's algorithm [33] is a modification of the LMS 
algorithm and, as such, is plagued by the same poor convergence problems. The 
Recursive Least Squares (RLS) algorithm exploits the well known matrix inversion 
lemma. The RLS converges much faster than the LMS but still requires a data record 
length of approximately (27V) samples [30]. 
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4. Cancellation of Repeater Jammers. The operation of the minimum variance beamformer 
derives from the array correlation matrix which represents the mix of interferences 
(jammers, clutter, etc.) and thermal noise. The depth of cancellation of any particular 
source is reciprocal to its power; stronger interference sources are allocated deeper 
nulls. In some cases it may be desired to decouple the null depth from the source's 
power. For example a low power repeater jammer, mimicking the desired signal, 
could pass with little attenuation through the array only to be enhanced by the signal 

matched filter. 



CHAPTER 3 

ADAPTIVE RADAR METHODS 

The airborne radar problem is two-dimensional with the radar returns a function of both 
angle and time. Airborne radars utilize velocity information (contained in the Doppler phase 
history) to discriminate between target and clutter. Radars are generally classified into one 
of three pulse repetition frequency (PRF) types: low, high, and medium. This classification 
is based on the range-Doppler operation. The low PRF radar provides unambiguous range 
measurements but, due to low sampling rate, it provides ambiguous Doppler information. 
The high PRF radar provides unambiguous Doppler information, but due to the higher 
sampling rate, it provides ambiguous range measurements. For many airborne applications 
the medium PRF radar, which is ambiguous in both range and Doppler domains, offers the 
best compromise solution, [37]. Adaptive space-time processing is particularly important 
for medium PRF radars, since it is the only way to simultaneously satisfy the conflicting 
demands of low antenna sidelobes for clutter reduction and placement of nulls for directional 
interference suppression. 
The areas of adaptive nulling, beamforming and spectral estimation are characterized 
by similar mathematical models. Hence, it comes as no surprise that some adaptive 
nulling methods bear similarities to spectral estimation techniques. The last decade has 
seen widespread development of so-called superresolution spectral estimation techniques. 
They owe their name to their capability to resolve frequencies beyond the resolution limit 
suggested by the data time aperture. Exploiting model similarities, spectral estimation 
techniques have been tailored to solve direction finding problems [38], [39], [29]. Eigen- 
analysis based methods have seen extensive application to spectral estimation and direction 
finding problems. However, few researchers have tried to exploit eigenanalysis for inter- 
ference cancelation. The eigencanceler is a new eigenanalysis based technique, motivated by 
approaches taken in spectral estimation and direction finding and developed for interference 
cancelation. 
The eigencanceler provides simultaneous rejection of both clutter and directional inter- 
ferences by adaptive processing in the spatial and Doppler domains. The eigencanceler uses 
eigendata to suppress clutter and directional interferences while minimising noise contri- 
butions and maintaining specified beam pattern constraints. The method was originally 
suggested by the author for suppression of directional narrowband interferences [40], [24]. 
This chapter extends the eigencanceler to the space-time problem and explores its appli- 
cation to airborne radar. 

3.1    The Eigencanceler 
In this section we present some important properties of the space-time correlation matrix. 
We subsequently formulate the optimization criteria for the Eigencanceler, provide the 
solutions weight vectors and develop the performance analysis for a simple case. 
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3.1.1    Eigenstructure of the Correlation Matrix 
In the radar problem the desired signal is present only part of the time (corresponding to 
the pulses returned from the target). Considerable simplification can be achieved if the 
interferences are estimated when the signal is not present. This corresponds to collecting 
clutter and jammer data from neighboring range cells. For this case the stacked array vector 
x(t) is a superposition of jammer signals j(i), clutter c(i), and thermal noise v(<) only. The 
space-time correlation matrix can then be written, 

R   =   E{xxH} 
=   Rj + Rc + Rv 

where Rj, Rc, R„ are the correlation matrices of the jammers, clutter, and noise, respec- 
tively. The reasonable assumption is made that the stochastic processes underlying the 
clutter echoes, jammer signals, and thermal noise are independent. Our objective is to make 
determinations on the eigenstructure of the space-time correlation matrix R. To that end 
we will now examine each contributor in more detail. 

1. Jammers. Jammer signals can be viewed as sources at discrete angles. In general we 
can model jammers to extend over the full range of baseband frequencies, since this 
range Bv is much smaller than the RF frequency at which the jammer signal originated. 
Using a continuous representation rather than the discrete approach in Section II-A, 
the jammers correlation matrix can be then written 

Mj = Y,l   Sjs{v)d{9i, u)dH{9i, v)&v (3.1) 

where the notation emphasizes the dependency of the position vector s on the angle 0,- and 
Doppler frequency v and SJti(v) is the power spectral density of the t-th jammer and at 

frequency v. 

1. Clutter. The clutter extends over a sector of angles 0, and due to the flight geometry 
of the airborne radar, it covers a band of Doppler frequencies. The clutter correlation 

matrix is given by 

Rc= [  f   SC(O,P)S(0,U)B(O,U)H8US9 (3.2) 
Je JBV 

where Sc(0, v) is the power spectral density of the clutter at angle 0 and at frequency v. 

2. Noise. Thermal noise is assumed white across the array and over the frequency band 
of interest. Stated another way, sensor outputs are uncorrelated to each other and 
uncorrelated to themselves at non-zero time lags. The resulting correlation matrix is 
the unity matrix scaled by the noise variance: 
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Rv = (Til (3.3) 

It should be noted, however, that when the correlation matrix is estimated from the 
data the noise correlation matrix will not necessarily have the form shown in (3.3). 

From the foregoing discussion it is evident that, in the airborne radar problem, clutter and 
jammer signals may be broadband spatially and temporally. The eigenstructure of the space- 
time correlation matrix of such signals has been considered by a number of authors, [41], 
[42]. The eigenanalysis of the space-time correlation matrix reveals a few large eigenvalues 
and a large number of small eigenvalues. The number of large (principal) eigenvalues is 
predicted by the Landau-Pollak theorem. The theorem states that the system energy is 
essentially concentrated in its largest r = 2BT + 1 eigenvalues, where B is the bandwidth 
covered by the signals received by the array and T is the total durations of those signals 
across the array structure. Before evaluating the number of significant eigenvalues for the 
space-time array, it is interesting to consider the case of the simple linear space array. The 
n-th element output due to a single source at angle 9 and assuming half wavelength spacing 
between elements is given by: 

Xn = ej2^(n-l) 

This signal may be regarded as samples of a sinusoid at frequency O.5sin0. The bandwidth 
is essentially zero, hence the number of eigenvalues predicted by the theorem is just one, 
which turns out to actually be the case. A continuum of targets between angles 01 and 
02 corresponds to a signal with bandwidth B = 0.5 (sin #i -sin02). The duration across 
the array is T = (Na - 1), hence the number of significant eigenvalues for this case is 
r = (Ns- 1) (sin öi - sin02) + 1. Another interpretation of the number r - 1 = 2BT is 
that it represents the number of cycles advanced across the array by the highest frequency 
component relative to the lowest frequency component. This number is clearly bounded by 
(Ns — 1). This interpretation is also useful in evaluating the number of significant eigenvalues 
for the space-time array. These signals may be viewed as samples of sinusoids of the form 

= J2*(*-¥+ß)(n-l) 

where \i = vTr is the Doppler shift between two samples in the tapped delay line structure. 
The number of cycles advanced across the array structure is bound by (Ns — 1), and the 
number of cycles advanced across the tapped delay line structure is (Nt — 1). Hence, the 
number of significant eigenvalues of the space-time correlation matrix is bound by: 

r < Ns + Nt - 1 

This bound is independent of target distribution and is inherent to the way the space-time 
structure samples the received signals. This eigenanalysis is substantiated by experimental 
data [43]. Simulations of typical eigenspectra resulting from a clutter field and background 
noise are shown in Figure 3.1 for three different record sizes: N, 3N, and lOiV snapshots. 
The curves were obtained using the simulation model described in chapter 2. 
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Figure 3.1 Eigenvalues of the space-time covariance matrix 

The total power of the jammer and clutter signals in the array is given by: 

P   =    tr[R] 

where A,- are the eigenvalues of R. The eigenanalysis suggests that most of the power 
is concentrated in the largest r < {Ns + Nt - 1) eigenvalues. For arrays with r < N, 
a small number of eigenvalues contain all the information about interferences (jammers 
and clutter). It follows that the span of the eigenvectors associated with these significant 
eigenvalues includes all the position vectors that comprise the interference signals (see 
(3.1) and (3.2)). For that reason we refer to the dominant eigenvectors, as interference 
eigenvectors. The interference eigenvectors span the interference subspace. The rest of the 
N - r eigenvectors are referred to as noise eigenvectors. They span the noise subspace, 
and are orthogonal to the interference subspace. These properties are summarized as follows: 

Property 1. The number of dominant eigenvalues of the space-time correlation matrix is 

bound by (Ns + Nt - 1). 

Property 2. The eigenvectors associated with the largest eigenvalues span the same algebraic 
subspace as the interference position vectors. 

Property 3. The noise eigenvectors are orthogonal to the interference subspace. 
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The eigencanceler exploits those properties of the space-time correlation matrix to construct 
a weight vector that is very effective in cancelling the interferences. 

3.1.2    Optimization Criteria 
Let Qr denote the matrix representation of the interference subspace generated by the 
jammers+clutter contributions. The columns of Qr consist of the interference eigenvectors. 
Let Q„ denote the matrix representation of the noise subspace. The columns of Q„ consist 
of the noise eigenvectors. Since Q^Q„ = 0, any weight vector in the noise subspace, w G 
span[Q„], has the property of cancelling interferences. Additional requirements may be 
imposed on w to optimize some array performance criterion. Two beamformer formulations 
are suggested: 

1. The minimum power eigencanceler (MPE) is defined as the solution of the following 
optimization problem. 

min    wffRw   subject to   Qf w = 0   and   C^w = f (3.4) 

With the MPE, the beamformer output power is minimized under the space-frequency 
pattern constraints CHw = f and the additional constraint that the weight vector w 
lies in the noise subspace. If the last constraint is removed we revert to the formulation 
of the minimum variance beamformer. 

2. The minimum norm eigencanceler (MNE) is designed to minimize the norm of the 
weight vector while maintaining the linear and eigenvector constraints: 

min    wHw   subject to   Q^w = 0   and   CHw = f (3.5) 

The solutions to the optimizations in (3.4) and (3.5) are provided in Appendix A. In 
particular, the minimum power eigencanceler is found to be: 

wp = Q„I\,Qf C [cHQvTvQv C]~* f (3.6) 

where Tv is a diagonal matrix of the reciprocals of the noise eigenvalues. 
The minimum norm eigencanceler solution is given by: 

we = Q„Qf C [CHQVQ"C]_1 f (3.7) 

an alternative expression of the MNE in terms of the dominant eigenvectors can be obtained 
by using the identity: QrQ^ + Q„Qf = I. 

we = (I - QPQ?) C [CH (I - QrQ?) C]_1 f (3.8) 

A block diagram of the MNE is shown in Figure 3.2. The difference between the weight 
vectors of the MNE and the MPE is significant and will by discussed in the next section. 
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Figure 3.2 The eigencanceler architecture 

Also, note, that for white noise, Tv = \ja2
v I, and the MPE filter in (3.6) reduces to the 

form of the MNE filter in (3.7). In most applications, however, the correlation matrix is 
estimated from the data and the noise correlation matrix will be in general different from 
a unity matrix. Since the two types of eigencanceler are suggested as alternatives of the 
minimum variance beamformer, it is useful to rewrite the MVB weight vector in (2.9) in 
terms of the eigenstructure of R. Using the relation: R_1 = QrI\.Q^ + Q^Qf, where Tr 

is the diagonal matrix of the reciprocals of the interference eigenvalues, we get: 

Wo = (QrrrQ? + Q„r„Qf )c [cH(QrrrQ? + Q„r„Qf )c 
-1 

(3.9) 

From inspection of (3.9), (3.6), (3.7), or (3.8) the minimum variance beamformer weight 
vector is a superposition of vectors in the noise subspace Q„, as well as vectors in the 
interference subspace Qr, while the MPE and MNE weight vectors lie entirely in the noise 
subspace. 

An illustrative geometrical interpretation of the MPE/MNE and the MVB is provided in 
Figure 3.3. The interference subspace and the noise subspace are represented by orthogonal 
planes. The weight vectors terminate on the constraint plane Ü. The main difference is that 
Wp/we is orthogonal to the interference subspace, while w0 is not. 

3.1.3    Steady State Analysis 
For the steady state analysis of the Eigencanceler's performance we consider the simple case 
of a single point jammer interference characterized by a stacked position vector Sj. A single 
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Figure 3.3 Geometrical interpretation 

linear constraint sHw = 1 is imposed. The space-time correlation matrix for this case is 

R = Pjsjsj + a2
vl (3.10) 

where Pj is the jammer power. In this ideal case the MPE and MNE provide identical weight 
vectors and the interference subspace is spanned by the single vector Sj. Direct substitution 
of Qr = sj, and the unity gain constraint in (3.8) or (3.6) yields the eigencanceler weight 
vector: 

W'=l-||p||2(I"Bj8?)8' (3-H) 

where p = Sj s. To calculate the minimum variance weight vector, R is inverted using the 
matrix inversion lemma: 

(3.12) R-       1(I-7SJS?) 

where 7 = (Pj/o^)/(l + Pjja\). Direct substitution of this result and the linear constraint, 
in (2.8) yields 

^r^RP^1"78^8 w„ = (3.13) 

The interference gain is defined gj = W^SJSJW. While the eigencanceler has null response 
to the interference, the MVB interference gain is: 

l2(l-7)2 

•   "J = G-llMI')" (3-14) 

Clearly when the jammer and desired signal position vectors are not orthogonal p ^ 0 and 
gj > 0, i.e. some interference is let in by the MVB. When Pj > cr^, 7 —► 1, and the gain 
gj^O. 
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Another merit figure of interest is the interference+noise output power, PI+N = wHRw. 

For the eigencanceler we have: 

Pl+N,e     =     wfRwe 
<rl 

1-llplf 

and for the MVB: „ 
Pl+N,o     =    wfRw0 

i—v|p||a 

Since 0 < 7 < 1, the total undesired power at the output of the eigencanceler is larger than 
for the MVB. This is hardly surprising since the MVB minimizes output power under a single 
linear constraint, while the eigencanceler minimizes output power with an extra constraint 
(orthogonality to interference subspace). The complete cancelation of the interference by 
the eigencanceler is traded off by the higher weight vector gain which, in turn, introduces 
more noise. However, we will show that this is not the case when the correlation matrix is 

estimated from the data. 

3.1.4    Perturbation Analysis 
When the correlation matrix is estimated from a finite number of snapshots the measurement 
noise causes perturbations in the values of the weight vectors. This perturbations affect 
differently the MVB, MPE and MNE weight vectors. The effect of perturbations on the 
eigenvalues and eigenvectors of the correlation matrix has been studied in [44] and [45]. The 

estimated correlation matrix can be written as 

R = R + AR 

where AR is a perturbation due to the measurement noise. Assuming a single linear 

constraint, the estimated MVB weight vector is given by: 

w0 = CoR^s (3-15) 

where c0 is the scaling factor required to meet the constraint. For the MVB method it can 

be shown [46] that 

E{7o
2} = ^ (3-16) 

where E {7*} = E{||Aw0||
2 / ||w0||

2} is the normalized MVB weight vector norm variance 
and Aw0 = w0 - w0. K is the number of snapshots used in the estimation of the correlation 

matrix R. This result holds for large K. 
The minimum norm eigencanceler weight vector for the case of a single interference source 

and single linear constraint is given by: 

we=ce[l-^]s (3.17) 

where ce is a fixed scalar and qa is the eigenvector associated with the largest eigenvalue Ai. 

It can be shown that for this case the error variance is given by [46]: 

EW4S (3-18) 
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where E{7^} = E|||Awe||
2 / ||we||

2}, Awe = we - we, and we is the MNE weight vector 

obtained from the eigendecomposition of the estimated correlation matrix R. Comparison 
of the error variances for the minimum variance beamformer and the minimum norm Eigen- 
canceler, expressions (3.16) and (3.18) respectively, reveals a much lower variance for the 
Eigencanceler. This robustness explains the superior performance exhibited by the Eigen- 
canceler. 
An estimate of the error variance for the minimum power Eigencanceler, a single interference 
source and a single linear constraint, can be obtained by rewriting (3.6) as 

Wp — Cp 
;-l      -r-_iÄ ~H 

R-'-A^qiqf   s (3.19) 

Using (3.15) and (3.17) with (3.19), we can write wp as a linear combination of the MVB 
and MNE weight vectors: 

Wp = CiW0 - c2we + c3s 

The MPE weight vector sensitivity to perturbations is consequently controlled by w0 and 
does not posses the robustness shown by the MNE method. The simulations presented in 
the next section substantiate the results of the perturbation analysis by showing that the 
MNE is superior in performance to the MVB and MPE. 

3.2    Simulations 
For programming convenience we considered a linear uniform array with Ns = 8 elements, 
spaced at half wavelength. Each array channel consisted of an FIR filter with Nt = 8 
taps. The sampling frequency was normalized to 1. The radar waveform was assumed 
narrowband, i.e. effectively constant over the propagation time across the array. We 
considered a forward looking airborne radar with a normalized platform velocity of 0.4. 
Hence ground clutter at boresight appears approaching at relative velocity 0.4. Radial 
velocities of other clutter returns depend on their azimuth angle. The clutter was assumed 
to extend over the angular sector -60 to +60 degrees. The clutter returns were simulated by 
spreading at random 60 scatterers in this angular sector. The clutter echoes were modeled 
as independent random variables, drawn from a random complex Gaussian distribution, 
with zero mean, and variance determined by the clutter-to-noise (CNR) parameter. We 
assumed the clutter sources uncorrelated to each other and uncorrelated between snapshots. 
Each clutter scatterer at each snapshot was assumed coherent across the array sensors and 
across the filter taps. The CNR was calculated from the contribution of all clutter echoes. 
Note that clutter signals extend over intervals in both the frequency and spatial domains. 
The simulation also included two jammer signals. Both were modeled with a relative radial 
velocity of 0.8. One jammer was placed at 30 degrees and the other at 35 degrees, and 
their power was 10 and 20 dB above the noise level, respectively. For simplicity we modeled 
the jammers as sinusoids at carrier frequency. For all simulations, the array was steered 
at boresight, and the array weight vector was constrained to unity gain over the Doppler 
frequency sector [0.7,0.9]. The sample correlation matrix was calculated using (2.6). The 
various weight vectors were computed using relations (2.9), (3.6), and (3.8), respectively. 
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Figure 3.4 Spatial patterns. K — ION. 

The results are grouped according to the number of samples K, used to estimate the corre- 
lation matrix R. We looked at two illustrative cases: a large data record (K = ION), and 
the smallest record for which R is still full rank, (K = N). From Figure 3.1 it is seen that 
for the large data record the eigenspectra approaches that of the ideal correlation matrix 
(all noise eigenvalues are of equal size). For the small record, larger variations are observed 
in the spread of the noise eigenvalues. 

Large Record (K = ION): Figure 3.4 provides the adapted antenna patterns for the 
MNE, MPE and MVB cancelers, respectively, for a sample run based on ION samples. 
The azimuth patterns have been calculated for Doppler frequency 0.8 (the center Doppler 
frequency of the jammers) and are indicative of the array's capability to cancel jammers. 
All cancelers place accurate nulls (jammers' azimuth shown by the vertical dashed lines). 
However, it can be observed that the minimum variance beamformer (MVB) and the 
minimum power eigencanceler (MPE) have a distorted sidelobe structure and a slightly 
biased mainbeam. For this large data record, the sample correlation matrix is close to the 
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Figure 3.5 Frequency response patterns. K = ION. 

true correlation matrix, and for high interference-to-noise ratios the differences between 
the three cancelers are not significant. In Figure 3.5 the MNE and MPE exhibit identical 
frequency response patterns (taken at zero look angle). The frequency response pattern 
indicates the clutter rejection performance with a notch being placed at the frequency where 
the clutter peaks. Significant differences among the methods become apparent for short 
data records. 
Short Record (K = TV): For this case we show three angular and frequency patterns for 
each method resulting from three different runs. In Figure 3.6 the patterns for the MVB and 
the MPE methods are distorted. Note that the sidelobes are higher than the mainlobe. 
Yet, the MNE still manages to provide repeatable useful performance, with accurate nulls, 
low sidelobes, and a mainbeam. In Figure 3.7 it is shown that the MNE places a deeper 
null for clutter cancelation than any of the other methods. Again high sidelobes and 
fluctuating MPE and MVB patterns are evident. In Figure 3.8 we plot the clutter+noise 
improvement factor for the three methods and various input clutter-to-noise ratios. The 
MPE is indistinguishable from the MVB. The improvement factor for the minimum norm 
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Figure 3.6 Spatial patterns. K = N. 
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Figure 3.9 3D plots of the received signal and space-time patterns.  K = N.  Notice the 
"notch" in Figure (b) corresponding to the clutter "ridge" in (a). 

eigencanceler shows a 5 to 10 dB improvement over the minimum variance beamformer. 
Figure 3.9 provides 3D plots of the received signals intensities (clutter and jammers) as well 
as the space-time patterns for each of the beamformers.   The MNE clearly has the most 
useful pattern. 
The simulation results presented in this section illustrate the robustness of the minimum 
norm  eigencanceler  method  and  its  superior  performance to  the  minimum variance 
beamformer. 

3.3    Discussion 
In this chapter we suggested a new approach, termed the eigencanceler, as an alternative 
method for adaptive radar processing. Two types of eigencanceler have been considered: the 
minimum power eigencanceler and the minimum norm eigencanceler.   Each eigencanceler 
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has been formulated as a constrained optimization problem. To evaluate their performance, 
these methods were compared to the conventional minimum variance beamformer. Our 
analysis and simulations indicate that the minimum norm eigencanceler is a very promising 
alternative to the minimum variance beamformer. Particularly for short data records, the 
MNE provides superior clutter and jammers cancelation, lower variations in the pattern, 
lower distortion of the mainbeam, and can be carried out at a smaller computational cost 
than the MVB. Unlike the minimum norm eigencanceler, the minimum power eigencanceler 
has been shown to have properties similar to the conventional beamformer. The superior 
performance of the MNE is traced to the fact that the MNE uses only dominant eigenvectors 
in the formation of the weight vector, while the MPE and MVB use small noisy eigenvectors 

as well. 
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CHAPTER 4 

ASYMPTOTIC DISTRIBUTION OF THE CONDITIONAL 
SIGNAL-TO-NOISE RATIO 

Reed et al. suggested the use of the maximum likelihood estimate of the covariance matrix 
in lieu of the true covariance matrix, to detect a known signal vector in unknown colored 
noise [10]. This method is the SMI. While not optimal in any sense, this procedure has the 
advantage of being implemented as a simple linear combination of the array inputs. 
The loss incurred by the estimation of the unknown colored noise can be evaluated from 
the conditioned signal-to-noise ratio (CSNR). The CSNR is defined as the ratio of the SNR 
achieved by the adaptive filter derived from the available data, to the optimal SNR (when 
the true data covariance matrix is available). As the data has a statistical model, the 
CSNR is a random variable. Reed et al. [10] determined its distribution, and used it to 
analyze the performance of the SMI method. This distribution turned out to have the 
remarkable property of being independent of the actual covariance matrix. In particular, 
they showed that if the signal vector dimension is iV, the number of samples required to 
achieve performance within 3 dB of the optimal (i.e., when the true covariance matrix is 
known) is approximately K = 2N. Other authors provided alternative proofs or extended 
the SMI analysis [11], [12], and [13]. 
When the colored noise can be modeled as the aggregate of an interference with a low-rank 
covariance matrix and white noise, eigenanalysis can be exploited to design a detector with 
faster convergence than SMI. The detector is derived from the interference subspace and 
has been referred to as the eigencanceler [1]. The eigencanceler is formulated as a modified 
minimum variance beamformer. A related approach is the PCI method derived from a low- 
rank approximation to the data matrix [22]. The minimum variance beamformer minimizes 
the array output subject to a set of linear constraints [23]. The eigencanceler produces 
the minimum norm weight vector meeting the set of linear constraints, and the additional 
constraint of orthogonality to the interference subspace [24]. In the special case of a single 
linear constraint, the eigencanceler and PCI provide the same solution. 
An expression for the probability density of the CSNR for the PCI method has been derived 
in [25]. It is shown therein that this probability density is the same as the probability density 
for the SMI method, except that the parameter (r + 1), where r is the interference subspace 
rank, is substituted for the signal dimensionality. It results that the method converges within 
3 dB of optimal for K ~ 2r. 

In this chapter, we suggest a new approach resulting in a different expression for the proba- 
bility density of the CSNR for the eigenanalysis-based detector. The new probability density 
is derived from the asymptotic properties of the eigenvectors of the estimated covariance 
matrix. It is shown that, unlike the SMI method and the result in [25], the probability 
density depends on the true covariance matrix. Two simpler approximations, independent 
of the covariance matrix, are derived for a large interference-to-noise ratio. While not similar 
in form, these approximations produce numerical results close to those obtained using the 
probability density in [25]. It is hoped that the asymptotic analysis presented in this chapter 
provides new insights into the properties of reduced-rank methods. 
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4.1    Distribution of the CSNR 
Under both hypothesis models given in chapter 2, x is a zero-mean, A x 1 complex-valued 
normal random vector with the A x A covariance matrix Rt, i = 0,1, where Ro = R and 
Ri = cr^ss^ + R, and the superscript stands for complex transposition. A distribution so 
defined is denoted x ~M (0, R,-). The matrix R is further assumed to obey the model 

R=QiAxQf+ av
2Q2Qf, (4.1) 

where Qx is the A x r matrix of principal eigenvectors, Ai is the r x r diagonal matrix of 
principal eigenvalues, a2

v is the variance of the white noise, and Q2 is the A x p matrix of 
noise eigenvectors, where p = A -r. The principal and noise eigenvectors are said to span 
the interference and noise subspaces, respectively. The eigencanceler weight vector for the 
case of a single steering vector linear constraint is given by [24, 1]: 

w   =    (itf-QiQf)s 

=   Q2Q?s, (4.2) 

where IN is the A x A unit matrix, Qx and Q2 are the respective interferenceand jioise 
subspaces in the spectral decomposition of the estimated covariance matrix, R = Qi AiQa + 
Q2A2Q^. The estimate R is computed from a set of K independent interference A x 1 
snapshot vectors xfc, k = 1,..., K, sometimes referred to as secondary data [10]: 

In this chapter we exploit some asymptotic properties of R. Statisticians often make use of 
asymptotic analysis [47, 48], but this approach has found applications in signal processing 
as well [44, 45]. In reference [48], Gupta establishes that the asymptotic distribution of 
B = \fk [R - R| is normal as a direct result of the central limit theorem. We use the 
normality of B to prove the following result. 

Lemma 1: Let R = ^£f=1 xfcxf, where xfc are assumed to be zero-mean, circularly 
symmetric A-dimensional random vectors, i.i.d. with A/"(0,R) distribution. Then the 
limiting distribution of B = VK [R - R] , as K -*■ oo, has zero-means and covariances 

E[bitfJ = crila*rn, (4.4) 

where aim are the elements of the matrix R, and the Hermitian property of R implies 
that an = a*{. 

Proof: Let x> (k) be the j-th component, i = 1,..., N, of the snapshot vector xfe. From 
the definition of a(j, E [x,- (k) x) (*)] = ^j- The expected value of the product of 
four zero-mean Gaussian random variables is given by (for example [45, p.381]): 

E [xt (k) x* {k) xj (k) xm (k)} = <Titfm + <Tu*'jm. (4.5) 

25 



It results that 

E[bijbU   =   KE 

=     Wim- (4-6) 

— J2 Xi (k) X*j (k) ~ Vij)   ( ß E X* (k) X™ (*) ~ U*m 

In this section, the probability density of the CSNR is developed. The CSNR is the SNR 
obtained by the application of a specified weight vector w, normalized by the SNR of the 
optimal case [10]: 

wHs 

Clearly, the CSNR is bounded, 0 < p < 1. Substituting (4.2) in (4.7) we obtain 

,2 

(4.7) 

(s»Q2q?sy , 
s^QsQfRQaQfsS^R^s 

for the eigencanceler. Our goal is to characterize the CSNR in (4.8) statistically. The 
perturbation analysis of the noise subspace Q2 is required before the characterization of p 
can proceed. 

4.1.1    Perturbation Analysis of the Noise Subspace 
The objective is to develop an expression for the estimated noise subspace Q2, in terms of the 
interference and noise subspaces of the true covariance matrix. The spectral decompositions 
of the true and estimated covariance matrices are 

R = QAQ" (4.9) 

and 

R = QÄQ". (4.10) 

respectively.    Let the notation Q={%} denote the matrix Q with elements q^. For 

uniqueness, Q ={<fo-} and Q= {%j} are selected such that qu, qu > 0. Assume that the 
covariance matrix is estimated using relation (4.3). 
Define the N x N matrix 

A = QHRQ. (4.11) 

This matrix represents perturbed eigenvalues and is in general complex-valued. The pertur- 
bation from the true eigenvalues is given by 

U = y/K (Ä - A) . (4.12) 

The following theorem is formulated for the asymptotic distribution of the elements of U: 

Theorem 1. The limiting distribution of U is normal with zero-mean and covariance 

E [UHU*m] = WjSilSjm, (4.13) 

where A; is an element of A, and 6,m is the Kronecker delta. 
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Proof: The proof follows from Lemma 1 applied to the vectors zfc = QHxk and the 
normality of the limiting distribution of the matrix B. From (4.11) and (4.12) 
and with B = y/K R - R , the matrix U can be expressed as 

U = QFBQ (4.14) 

The normality of the limiting distribution of B is maintained through the linear 
transformation Q, hence the limiting distribution of U is normal as well. Applying 
the Lemma 1, we have E [«„«fj = Wjm, where pim is an element of QffRQ = 
A. But A is a non-negative diagonal matrix of the eigenvalues of R, hence we 
have fin = \{6u and p*jm = XjSjm. Q.E.D. 

Define the N x N matrix Y = QHQ. Since both Q and Q are unitary, so is Y. The 
perturbed eigenvectors can be expressed Q = QY. From the definition of Y and (4.11) we 

have A = Q"RQ = QHQÄQHQ =  YÄY"   Define 

V = y/K(Y-IN), (4.15) 

then Y = IN + 4-V. From Ä = YÄY   , the previous relation and (4.12), Ä can be written: 

=   A+-^=(VA + D + AVH)+M, (4.16) 

where D =^K (Ä - A) and M= £ (VD + BVH + VAV") + ^VDVH. In the 
following we make use of the notation o(l/K). The notation M = o(l/K) is defined 
as limA'^oo Pr [M < (1/K) H (K)] = 1, where the inequality is component-wise and H (K) 
is bounded as K -* oo. Note that according to this definition V, A, and D are o(l), i.e., 
bounded as K -»• oo. Also note that the calculus of o(l/K) implies that if A and B are 
o(l/K), so is A + B. Using the o(l/K) notion, we can define the symbol = to denote 
equality to the 1/K order, i.e., A £ B implies that A - B = o(l/K). The matrix M in 
(4.16) is o(l/K). If we neglect M in the equation, the resulting equality holds to order 1/K 
accuracy. A term by term comparison of the first and last lines in (4.16) yields: 

U^VA + D + AVH, (4.17) 

where the symbol = is used for asymptotic approximation. 
According to the model assumed in (4.1), the N x N matrix of eigenvalues A can be parti- 
tioned . V 

'v*P 
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Similarly, the Nx TV matrix V is partitioned into the following matrices: rxr Vn, rxpV12, 
P x r V21,p xp V22: 

Thus, if the elements of V are denoted, Vij, i.e., V = {vy},-=lt...iNi=li...iJV, then V12= {vy},^!,...,^^!,..., 
Let the matrix U be partitioned in a similar way. We have from  '(4.17), (4.18), and (4.19)", 
and noting that D = A/K (Ä - Aj is a diagonal matrix, 

Ui2 = cr„2V12+A1Vf1. (4.20) 

To proceed, we show that V^+V^   =  0. Partition Y in a fashion similar to V, i.e. 

Y = ( Y
n       *2 j with Yn rxr, Y12 r x p, etc. It follows from relation (4.15) that 

,N 

Using the unitary property of the matrix Y and the relation above, we have 

Ip   =   Y2i Y21 + Y22Y22 L
22 

=   £v„V» + (l, + -I=V22) (l, + -£.V„]    . (4.22) 

From the last relation it follows that 

^   IP. (4.23) 

From the unitary property of Y we also have 

0   =   YnY21 + Yi2Y22 

=   ^(V12 + V£), (4.24) 

where o(l/K) terms were neglected to obtain the last relation. Using Vi2 = — V^ in (4.20) 
we obtain: 

V12 = -(A1- (72Ir)
_1 U12. (4.25) 

The next theorem establishes the asymptotic distribution of the components of Vi2. 

Theorem 2. The limiting distribution of the r x p matrix Vi2 is normal with zero-mean 
and 

\      2 

E [vijvU =        i(Tv   2SuSjm, (4.26) 

where V = {^}i=1 Nj=1 N , and V12= {Vij} i = 1,..., rj = r + 1,..., TV. 
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Proof: A term by term listing of (4.25) yields 

Vi 
uij 

At — av 

for i = 1,..., r and j = r + 1,..., N. Therefore, 

E[VijVlm\    =    — -2 

(4.27) 

kal     8ü8jm. (4.28) 

The last relation was obtained applying Theorem 1. Q.E.D. 

A consequence of Theorem 2 is thatjhe elements of Vi2 are asymptotically independent. 
The columns of the matrices Q and Q are the eigenvectors of R and R, respectively. Define 
the N x r matrix Qx and the N x p, (r + p = N) matrix Q2 such that Q = [Qi | Q2] • 
Note that Qi and Q2 are orthogonal, i.e., Qf Q2 = O.JThe matrix Q is partitioned similarly, 
Q = IQ! | Q2| . From the relations above, and from Q = QY and (4.15), we find that 

Q2      =     QJY12 + Q2Y22 

=   Q2(lp + -^V22)+-^QlV12. (4.29) 

Note that Q2 (lp + ^V22) and Ch are orthogonal, i.e., (lp + ^V22) Qf Qi = O^The 

last expression provides the perturbation analysis of the estimated noise subspace Q2 in 
terms of the true noise and interference subspaces, Q2 and Qi, respectively. This relation 
is used to derive the probability density of the conditioned SNR. 

4.1.2    Computation of the PDF _ 
Define the transformed noise subspace, the N xp matrix C = R1/2Q2, where the square root 
is defined such that R1/2R1/2 = R. Starting from the definition of the CSNR />, substituting 
R-i/2C _Q25 and defining the transformed steering vector a = R_1/2s, we get 

(sFQ2Q?s)2 1  

sHQ2QfRQ2QfssHR1s 

(sHR-1/2CCHR-1/2s) 
2 

s^R-VacC* CC^R-Vas s^R^s 

_     (*HCC"i  J- (4.30) 
a"CCHCCHaa"a 

Substituting the unit magnitude vector b = a/ |a| for a above and letting z = C   b yields 

p = -i '—. 4.31) 
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Using the relation R1/2 = Qi A]'2Qf + cr„Q2Qf,  (4.29), and the orthogonality between Qi 
and Q2, we get 

C = a„Q2 IIp + ^V22j + -LQ^V^. 

Z =<7V f Ip + 

(4.32) 

Expand the term z using (4.32) and the orthogonality relations Qf Q2 = Ip and Qf Qi = 0: 

(4.33) 

We make the assumption that the projection of the steering vector on the true interference 
subspace is negligible with respect to its projection on the true noise subspace, i.e., Qf s <C 

Q2 s . This assumption is reasonable and is just an expression of the requirement that 
;he interference be received in the sidelobe region. Mainlobe interference is not addressed 
here. From the definition of vectors a and b we have:   Qf s = Qf Rx/2a = |a| A}'2 Qf b > 

|a| <7„Qf b , where the last inequality follows from the observation that av is smaller than any 

element of A*.  Likewise,   Qf s   = |a| 0-„Qf b . Since, |a| cr^Qf b   <   Qf s   <   Qf s   = 

|a| cr„Qf b , it follows that   Qf b   <   Qf b . The vector b has unity length, hence 1 = 

b"b = hH (QiQf + Q2Qf) b implies that 

b"Q2Qfb^l. (4.34) 

With this result, and using (4.23), we have 

z"z ^b"Q2 (lp + ^L_V22) (lp + ^L_V22)
HQfb^   <r2,   and   the  numerator  of  (7.17) 

becomes 
(z"z)W„4. (4.35) 

To evaluate the denominator, first compute the pxp matrix CHC. From (4.32) and (4.23): 

C*C   =   „I ((lp + 2=V2^j    Qf Q2 (lp + ^V22) + ^-2Vf2AxV12 j 

"   °*v (Ip + ^«2V»AiV») • (4-36) 

As a result, the denominator of (7.17) is evaluated: 

z"C"Cz   -   a*** (lP + ^a;2Vf2AxV12) z 

=   at + Iz^VgAiVwz, (4.37) 

where we made use of the relation zHz = a\ (from (4.35)).   Using (4.33) in (4.37) and 
neglecting terms o (l/K3/2) and higher, the term ^zi7V^AiVi2z is asymptotically equal 
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to i^bHQ2VgA1Vi2Q^b. Thus we have 

zHC"Cz * a4
v + ^rt^VSAiVxat, (4.38) 

where t =avQff b and tFt = ajj (see (4.34)).   Write the r x p matrix Vi2 in terms of its 

rows: V12 — {utj}i_1 rj-=r+i,...,jv — 

/ vf \ 

\vf y 

AaV12t = 

It follows that the CSNR can be written as 

. Then the following expression is obtained: 

/ Ajvft \ 

^ Arvf t , 
(4.39) 

1 + «T-^^VgAxV^t 
1 

i~7' 

where from (4.39), C = ^-4tHVf2AxV12t = a"4 £i=i A; 

vf t in the previous relation are complex Gaussian random variables, with E \f t 

vft 

(4.40) 

. From Theorem 2, the terms 

0 and 

variance E vft = tÄ£ ViV- H 

the p x p covariance matrix E ViV 

t. To find an expression for the variance, we first evaluate 

H . 

E ViVs- 
H E 

'  Viir+1vlr+1     . . .     V,-,r+lV,V  ^ 

\  ViJfVtr+1 VitNvlN      ] 

\i(T2
v 

lp, \2-"-P 
(4.41) 

where the last relation is a direct consequence of Theorem 2. Using this relation we obtain 

E v?t A;<^     ,H 

=   a4 

(A; - *IY 
t"t 

v{k-°l) 2' (4.42) 

where we used tHt = cr*. Next we obtain the probability density of the Hermitian form 
p{ = vf ttHVj. According to a lemma by Goodman [49], the characteristic function (c.f.) of 
the variate m with respect to the density of v,- is given by 

*« w = det (lp - j0£,ttH) ' 
i = l,...,r, (4.43) 
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where £,■ = E v,-vf . From (4.42), £,• = A.-cr*/ (A,- - cr^)2 Ip. The determinant in the relation 

above can be computed by recognizing that the p x p matrix (lp — j6HittH) is the sum of an 

identity matrix and the rank-one matrix j0£;ttH = jOX^/ (A,- — al) ttH. The only non- 
zero eigenvalue of the rank-one matrix is jOXiaH (A,- - al)2 tHt = jOXiCr*/ (A,- - al)2 . Conse- 
quently, the matrix (lp - jöD.-tt^) has an eigenvalue equal to (1 - j0A,<74/ (A,- - cr^)2) and 

(p - 1) unit eigenvalues. It follows that det (l„ - j0I3.-ttH) = 1 - j0At<74/ (A,- - c^)2 . From 
the last relation and (4.43) it follows that the c.f. of pi is given by 

^■(ö) = (l-iM^)"1, (4-44) 

where /I; = At<7^/ (A,- — al) . This c.f. is that of an exponential random variable (also a 
non-normed chi-square variate with 2 degrees of freedom) and with mean E [m] = /!,•. The 
variate V{ = <T~

4
A,-//,- then has an exponential distribution with mean 

vi = E[vi] = X2l(Xi-atf. (4-45) 

The random variable ( in (4.40) can now be written 

C = £>.■• (4.46) 

The statistical independence of the V{ variates follows from Theorem 2 and the independence 
of the vectors v,-. Consequently, the c.f. of ( is given by 

= na-i^r1- (4.47) 
i=l 

The product appearing in the expression of the c.f. can be converted to a sum by applying 
the following partial fraction expansion: 

where 7r,- = YTj=i„j^i "il' (?j -Vi), [50]. The inverse Fourier transform of the c.f. $c (0) 
yields the density of the random variable ( in the form of a sum of exponential densities 
weighted by the factors 7r,-: 

/(0 = £?e-</*,        C>0. (4.49) 
»=1 u* 

It follows that the density of the CSNR p = (1 + (1/K) £)-1 is given by the expression 

/(/>) = Kp-2 J2 ?exp rKti-l)\ ,        0 < p < 1. (4.50) 
t=i v% \ Vi I 
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4.1.3 Discussion 
The expression for the CSNR probability density in (4.50) merits further consideration. It is 
observed that the probability density depends on the number of samples K, the number of 
dominant modes r, and the eigenvalues of the true covariance matrix (through the quantities 
Vi. Since the sum of the eigenvalues equals the total power in the received signal (inter- 
ference+noise), it follows that the probability density is parameterized by the interference- 
to-noise ratio (INR). This result is different in form, as well as in substance, from the 
distribution of the SMI method in [10]. That expression, provided below for reference, is 
that of a beta distribution and is independent of the covariance matrix: 

f (p) = r^ + 1) (1 - of'2 pK+1~N, (4.51) HP)     T(N-l)T(K + 2-N){      P)      P V       ; 

where r (K + 1) = K! is the gamma function. Another interesting comparison is with the 
density of the PCI method in [25]. As mentioned in the introduction, the eigencanceler and 
the PCI method of reference [22] provide the same weight vector in the case of a single linear 
constraint. The density of PCI's CSNR is similar in form to that of the SMI method, with 
the difference that in (4.51) the signal dimensionality N is replaced by the quantity (r + 1), 
[25], i.e., 

f(p) = r(;r + i) r.! K_ (452) 
nP)      T{r)T(K + l-r)K       P>      H y 

Like SMI's density, this density is independent of the covariance matrix and the CNR. An 
additional difference between the densities of (4.50) and (4.51) is the asymptotic nature 
of the former. A closer look at expressions where the asymptotic approximation is applied 
(such as (4.16)) reveals that the nature of the approximation is to neglect o (l/\/K) terms 
relative to o (1) terms. However, this expression is later squared ((4.40)), thus the asymptotic 
approximation implies neglecting terms o(l/K) terms relative to o (1). To achieve an order of 
magnitude ratio between the terms, the number of samples in data set needs to meet K > 10. 
Thus a modest number of samples is sufficient to satisfy the asymptotic approximation. 
Further analysis of the newly developed probability density, as well as comparisons with other 
densities and an assessment of the effect of the asymptotic approximations, are provided in 
the numerical results section. 

4.1.4 Approximation for Large INR 
An approximation to the expression in (4.50) can be obtained for the case of a large 
interference-to-noise ratio, A; > o2

v. Earlier in this section it was shown that the quantity //,• 
is an exponential variate (see (4.44)). For A; > <r2v, we have ft = \aH (A; - <rjj) ~ c^/A,-. 
It follows that Vi = o--4As-ft = 1. Then from (4.46), C is the sum of r i.i.d., unit-mean, 
exponential variates; i.e., ( has a gamma distribution with parameters r and 1. The density 
of C is then given by 

/(0 = F|^Cr-1e-C,        C>0. (4.53) 
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Using this density in conjunction with the relation between the variates p and ( in (4.40) 
yields the density for the CSNR in the case of large INR: 

f(p) = I-f^e-K/p(l-p)T-1p-{r+1\        0<p<l. (4.54) 

It should be noted that as A2/cr^ —>■ oo,    (4.50) —*    (4.54). 
A further simplification can be obtained by keeping only the first two terms of the series 

The last formulation does not strictly guarantee that 0 < p. However, since E [(] = r and 
var [(] = (2r) , then for K ^> r, p is almost certain to be non-negative. The density of the 
CSNR is obtained from    (4.53) and (4.55): 

/ (p) = fyf~K{1~P) (1 - PY~l»        ° < P < I- (4-56) 

It should be noted that with the large INR approximation, the dependency on INR is not 
present in either (4.54) or (4.56). Finally, we note that if we define the CSNR loss, 7 = 1 — p, 
then it follows that the probability density of the loss is given by the gamma function with 
parameters r and K: 

/(7) = r(r,ür) = ^rV,       0 < 7 < 1. (4.57) 

The CSNR loss is thus distributed as the incomplete gamma function. 

4.2    Numerical Results 
Computer simulations were conducted to support the theory presented in the previous 
section. The simulation scenario consisted of distributed clutter, white Gaussian noise, 
and a space-time array. The clutter consisted of 120 point sources randomly distributed in 
the angular sector 0-20 degrees with respect to the array boresight. The array boresight 
was assumed perpendicular to the platform motion. The clutter signals were summed non- 
coherently to form the signal received at the array. The space-time processor was fed by an 
Ns = 8 element linear array with Nt = 4 tap delay lines at each element, resulting in a signal 
space dimensionality of N = NsNt = 32. The steering vector was pointed at 50 degrees and a 
normalized Doppler frequency of 0.4. The clutter map in angle-Doppler coordinates is shown 
in Figure 4.1. For this scenario, the interference subspace was found to have rank r = 4. 
The space-time covariance matrix was estimated from a specified number of snapshots of 
those signals ((4.3)), and weight vectors were derived for SMI and eigencanceler processors 
((4.2) for the latter). The CSNR was then evaluated from (4.7). Maintaining the same 
scenario, the process was then repeated numerous times to yield independent realizations of 
the CSNR variate. The numerical results were compared to the theory as described below. 
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Figure 4.1 Simulation clutter map. The vertical line indicates the steering vector. 
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Figure 4.2 The mean conditioned signal to noise ratio as a function of the clutter to noise 
ratio for covariance matrix estimates using K = 27V samples. 
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Figure 4.2 plots the mean CSNR for different clutter-to-noise ratios (CNR). The covariance 
matrix was estimated from K = 2N = 2NsNt = 64 snapshots. For each CNR, the mean 
was computed from 100 runs. The simulation results are shown together with values of E [p] 
computed using numerical integration of the following densities: for the SMI, (4.51), and for 
the eigencanceler, (4.50), (4.54), and (4.56). Also shown are results obtained using the PCI 
density, (4.52). For this case (single linear constraint embodied by the steering vector), the 
PCI and eigencanceler methods produce the same weight vectors, and thus the same CSNR 
p. The objective is to evaluate the accuracy of the four probability density expressions for 
eigenanalysis-based processing ((4.50), (4.54), (4.56) and the PCI density). From the figure 
it can be seen that for CNR > 20 dB, all four expressions provide a good representation of 
the data. The approximation in (4.56) and the PCI method provide almost indistinguishable 
mean values. For large CNR's, the expectations yielded by (4.50) and (4.54) are also indis- 
tinguishable, as they should be. However, the most interesting observation is that for CNR 
< 15 dB, the approximations in (4.54) and (4.56) as well as the PCI expression, fail to 
represent the data. Expression (4.50), however, provides a better fit to the data, at least for 
10 dB < CNR < 15 dB. This observation supports the assertion that, unlike SMI processing, 
for eigenanalysis-based processing the CSNR is not independent of the covariance matrix. 
It is clearly evident in the figure that the CSNR of SMI-processed data is independent of 
the CNR, while the CSNR is CNR-dependent for the eigencanceler. It is also clear from the 
figure that the eigencanceler theory provides a lesser fit to the data for CNR < 10 dB. That 
is due to the asymptotic nature of the expressions. Indeed, when the number of snapshots 
was increased to K = 3N = 3NsNt, Figure 4.3 shows that the expectation using the new 
probability density in eq. (4.50) represents the data down to CNR = 8 dB. 
Figure 4.4 shows the result of a further increase in the number of samples to K = 4iV. The 
theory now provides a good fit to the data down to CNR = 5 dB. 
As noted above, the asymptotic approximations seem to have little adverse effects at CNR 
> 10. Further support to this can be found in Figures 4.5 and 4.6. Each of the data points 
in the figure is an average of 100 Monte-Carlo runs. In Figure 4.5 the mean CSNR is shown 
as a function of the number of snapshots K, at CNR = 10 dB. 
The new probability density provides an accurate fit to the data, down to a sample size of 
K = N samples. The two approximations to the probability density, as well as the PCI 
density, show a slight bias. The SMI density provides a good fit as well. For K < N the 
SMI cannot be applied, since the estimated covariance matrix R becomes singular. Figure 
4.6 shows the mean CSNR of the eigencanceler only, as a function of the number of samples 
K, down to K = JV/16. 
Again there is good agreement between the new probability density and the data.   The 
approximation given by (4.54) maintains only a slight bias.   The bias of approximation 
(4.56) is slightly larger, while the PCI density is more significantly off at very low number 
of samples.  We can conclude from these plots that at CNR > 10, (4.50) provides a very 
accurate description of the data down to a very low number of samples. 
Figure 4.7 provides the histograms of p for the SMI and the eigencanceler produced by 10,000 
runs at CNR = 10 dB. The number of samples used to estimate each covariance matrix was 

K = AN. 
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Figure 4.6 The mean conditioned signal to noise ratio as a function of the number of 
snapshots for CNR = 10 dB for low number of samples. 
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A good match is observed between the probability density in (4.50) and the data. Likewise, 
the SMI density also provides an accurate representation of the data. The approximations 
to the eigencanceler's probability density as well as the PCI's provide a reasonable, though 
markedly less accurate, match to the data. 

4.3    Discussion 
A new expression has been developed for the probability density function of the CSNR of 
eigenanalysis-based array processing. The new expression is derived from the asymptotic 
theory of the principal components of the estimated covariance matrix. It is shown that, 
unlike the case for the SMI method, the eigencanceler's CSNR probability density is not 
independent of the covariance matrix. The new probability density provides a better fit to 
the data than expressions which are independent of the covariance matrix, for a wide range 
of interference to noise powers. Two simpler approximations are derived for the case of large 
INR. These approximations are shown to be independent of the covariance matrix and to 
provide a good fit to the data for INR > 15 dB. The asymptotic nature of the expressions 
seems to have little effect for INR > 15 dB. However, by increasing the number of samples 
to K = AN = 128, the new density produces a good match to the data down to INR = 5 

dB. 
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CHAPTER 5 

PERFORMANCE ANALYSIS 

Airborne surveillance radars are faced with the difficult task of detecting weak moving targets 
in strong clutter and interference environments. Typically, the spatial and temporal spectra 
of the clutter is unknown and varying, hence adaptive techniques with fast convergence 
rates are important to the designers of next generation air surveillance radars. The airborne 
radar problem is two dimensional, with echoes of a moving target being a function of both 
angle and Doppler. A space-time receiver architecture that consists of an antenna array and 
provides temporal filtering of each spatial channel is capable of exploiting the information 
in both domains. 
Previously, in chapter 1, it was mentioned that the SMI detector suggested by Brennan and 
Reed has a number of drawbacks like its detection performance, convergence rate for large 
N, sensitivity to calibration errors, and not being CFAR. Kelly's GLR [14] based detector 
is more complex and has convergence properties similar to the SMI detector. Calibration 
errors are also a problem. The SMI method was shown to be sensitive to calibration errors 
[15, 16]. In this chapter we advance that most of these drawbacks can be avoided in the case 
of STAP radar, by a linear eigenanalysis-based detector. 
This chapter analyses the performance of the eigenanalysis-based detector with respect to 
convergence rate and sensitivity to calibration errors. Theoretical probability of detection 
expressions derived analytically are corroborated by simulations. Convergence rate and 
robustness are analyzed and compared to the SMI method. The analysis and numerical 
results clearly indicate the advantages of the eigenanalysis approach for space-time radar. 
These results are further supported by processing and analysis of Mountain-Top dataset. 

5.1    Performance Analysis 
This section provides the performance analysis for the eigenanalysis-based method with 
respect to detection and robustness to calibration errors. Results are interpreted through a 
performance comparison with the SMI method. 

5.1.1    Detection 
A widely accepted measure of performance for radar systems is the probability of detection 
curves. These curves show the probability of detection with the input SNR as an independent 
variable and the probability of false alarm as a parameter. In adaptive radar, detection 
probability is a function of the weight vectors. In turn, weight vectors are derived from 
estimates of the covariance matrix of the secondary data, and as such are random variables. 
This makes the detection probability realization-dependent. To assess the receiver operation 
under a wide variety of conditions, it is desired to generate average probability of detection 
curves. A convenient procedure consists of expressing the detection probability as a function 
of the CSNR defined in the previous chapter. The definition of the CSNR is repeated here 
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for convenience: 
wHs _  SNReff  

9 ~ SNRopt ~ wHRw s^R^s 
(5.1) 

where SNReff is the effective SNR and is defined as the ratio between the target power and 
the colored noise power at the array output, i.e., 

wHs 
SNReff=^R^ 

(5.2) 

and SNRopt = sHR_1s is the optimal SNR. The conditioned SNR is a random variable, 
always bounded 0 < p < 1. The density of the conditioned SNR for the SMI method with 
Gaussian data has been characterized in [10]: 

/ (p) = const x (1 - pf-2 pK+1~N,        0<p<l. (5.3) 

The density of the conditioned SNR for the eigenanalysis-based detector has been derived 
in [1]. The development is based on the asymptotic expansion of the distribution of the 
principal components of the covariance matrix. Therein it is shown that the conditioned 
SNR can be expressed as 

'-TTSC .    .   M 

where C = ELi v*-> and vi are 1-1-^- random variables with exponential distribution and 
hence, ( is a Gamma random variable with r degrees of freedom and parameter 1. This 
characterization results in the density 

where 7T,- = ]Yj=i &i »il ivi ~vi)- Tne usefulness of this expression has been demonstrated 
by Monte Carlo simulations presented in the reference. Also shown in the reference is that 
for large clutter-to-noise ratio and large K (K > 10), 

p = 1 - j(. (5-6) 

From (5.6), and using the property of the gamma distribution, E [(] = r, the condition 
E [p] = 1/2 is met for K = IT. This property is significant in the space-time array since 
r = u + K-l<Ci'K = N holds even for moderate size arrays. A higher convergence rate 
is tantamount for achieving the same performance level using estimates based on smaller 
secondary datasets. Since the clutter environment can be assumed only locally homogeneous, 
an increased convergence rate could be essential to the proper operation of the system. 
The decision statistic for detection conditioned on the weight vector is given by the instan- 
taneous output power: 

r, = |wHx|2 (5.7) 
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When x is the signal received from the cell under test and is modeled as a complex Gaussian 
random vector with circular symmetry under both hypothesis models, the statistic 77 has a 
chi-square like density: 

fv(r)\Hi,w) = =e-^ (5.8) 

2 
where i — 0,1, and the statistic mean values are rjx = E^ [v] = &1 wHs    + wHRw and 

T/O = EH0 [rj] — wffRw. Scaling of the weight vector does not affect the conditioned SNR. 
To simplify notation, it is assumed that the gain of w has been set such that wHs =1. For 
a given threshold TJT, the probability of detection is given by 

/•oo 

Pd   =    /    f,,(Ti\Huw)dri 

=   e-^i (5.9) 

The probability of false alarm is given by 

TOO 
Pf   -    I    fv(v\H0,w)dr] 

JriT 'VT 

O-VT/VO (5.10) 

The mean value of the decision statistic is equal to the average output power. An upper 
bound on the performance can be obtained from the case when the true noise covariance 
matrix is known. Then, the optimal weight vector with the unity signal gain constraint is 

given by w = &R-1s, with k = (s'ffR-1sJ     . The output power under H0 is given by: 

'0 = -&k=rs = k = i (5J1) 

From which the probability of false alarm is 

Pf = e-
ar,T (5.12) 

The probability of detection can be expressed directly in terms of the probability of false 
alarm by noting that the output power under Hi is: 

'■—J + ^ii-^ + i (5-13) 

from which it follows that the probability of detection, expressed as a function of the proba- 
bility of false alarm, is 

Pd   =   e-
VT/^ 

=   Pf
1+a^ (5.14) 

To obtain expressions for the detection probability of the SMI and the eigenanalysis methods, 
we observe that, under either hypothesis, the output power can be expressed in terms of the 
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conditioned SNR p and the parameter a. From (5.1) and (5.7) the conditional output power 

under Ho is: 
r/o = — (5-15) 

pa 

It follows that the conditioned probability of false alarm is given by: 

Pf[p = e-
par>T (5.16) 

The average probability of false alarm is then computed from 

Pf= fPfMp)dP (5-17) 
Jo 

where fp(p) is given by (5.3) for the SMI method, and by (5.5) for the eigenanalysis method. 
The conditioned output power under Hi is given by, 

V1 = aa. + — (5-18) 1        s      pa 

and the conditional probability of detection is 

The average probability of detection is then expressed: 

Pä = f1 Pä\PfP(p)dP (5-2°) Jo 

These expressions are used later to generate the theoretical probability of detection curves 
for each of the methods. 

5.1.2    Robustness 
It is well known that the performance of adaptive arrays is affected by calibration errors. 
Analysis of the Mountaintop data reported in chapter 6 reveals target cancelation due to 
the mismatch between the true received signal vector and the steering vector used in calcu- 
lating the weights. Also noted in chapter 6 is the fact that the target cancelation is more 
pronounced for the SMI than for the eigenanalysis method. This observation motivates the 
analysis in this section. 
Target cancelation occurs when there are calibration errors and the target signal is present 
during training (estimation of the noise covariance matrix). Since the steering vector is 
mismatched to the signal vector, the target is interpreted as an interference and the array 
proceeds to cancel it. To isolate signal cancelation from noise covariance matrix estimation 
effects, we assume that the true covariance matrix is known. In fact, this assumption 
accurately represents the case when the weight vector is applied to the data it was derived 
from. Additionally, we make the following simplifying assumptions for analytical tractability: 

1. Processing is carried out only in the spatial domain. 

47 



2. Calibration errors are limited to the angle of the steering vector. Thus, the target 
and the presumed steering vector are represented by vectors of the type 

8(tf)=^7[l,^,...,^-1)«]r. 
3. There is a single interference represented by the vector S;. 

4. The interference vector is orthogonal to the true target vector, sfs = 0. 

The perturbation model presented above represents the case when the steering vector 
sweeping an angular sector searching for targets is pointing off-target. A method sensitive 
to such errors would require a dense search pattern. However, it should be noted that this 
model is a simplification which does not cover angle errors randomly distributed over the 
array. These errors lead to waveform distortions rather than an angle error. Thus the simple 
model used here provides some, if limited, indication of the robustness of the eigencanceler. 
The Mountain-Top data analysis presented in the next section lends further support to the 
robustness claims. 
The analysis will be shown to be invariant to a scaling constant, hence we define the 
normalized covariance matrix, 

R = I+cF^ss" + öf stsf (5.21) 

where of = SNR and of = INR (interference-to-noise ratio). Performance is investigated 
through the gain term 

G = —=r-— (5.22) 

where Rt is the noise-plus-interference covariance matrix, R; = I+öf s,-sf*. This gain is the 
ratio of the array output SNIR to the input SNR. In the ideal case, when there are no 
calibration errors, and due to the orthogonality assumed between the interference and the 
target, it is readily shown that G = 1. Consequently, in the presence of calibration errors 
0 < G < 1. The goal is to characterize G for the SMI and eigenanalysis methods. The SMI 
weight vector is given by 

w = R_1s (5.23) 

where s is the presumed steering vector. The eigencanceler weight vector is given by: 

w = (i - s8sf) s (5.24) 

The gain G for each of the methods is computed in the appendix. For the SMI it is found: 

G  = |/>i I2 (1-7,)2  (525) 

°      l-ls(2-ls)\Plf-7i(2-7i)\p2\
2 K •    } 

where Pl = sHs, p2 = sHst-, 7s = SNR/ (1 + SNR), and 7i = INR/ (1 + INR). Note that 
0 < 7s,7; < 1. As observed by other authors through similar analysis, G0 degrades as SNR 
increases.   In the extreme case, SNR = oo (js = 1), and G0 = 0. The other extreme is 
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G0 = |/9a I2 / (l - |/9212), obtained for 7, = 0 and 7; = 1.  The eigencanceler's gain term is 
computed in the appendix and is given by: 

a IPi 
1 - W 

(5.26) 

From (5.25) and (5.26) it is observed that G0 < Ge, with the equality for 7* = 0 and 7,- = 1. 
Consequently, the eigenanalysis method is less affected by angle calibration errors than the 
SMI method. This is illustrated in Figure 5.1, where Ge and G0 are plotted for a 14-element 
array, several values of the SNR factor 7,, an error angle of TT/10 radians, and an angle of 
An/10 between the presumed steering vector and the interference. 
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Figure 5.1 Signal cancelation effects: Ge, G0 vs. 7S with 7,- as parameter. 

5.1.3    Numerical Results 
In this subsection, theoretical probability of detection curves are generated for each of the 
methods, and are compared to simulation. The array has eight elements and four tap delays 
at each channel. The signal environment consists of clutter distributed in an angular sector. 
The clutter is distributed between 20 degrees and 40 degrees. The total input CNR of the 
distributed clutter equals 15 dB. The look direction steering vector points to 50 degrees 
and 0.5 normalized Doppler frequency. Eq. (5.20), together with (5.5) and (5.3), provides 
the means to analyze the detection performance numerically. Theory and simulations are 
compared in Figures 5.2 and 5.3. The densities of the conditioned SNR for the eigenanalysis 
and SMI methods, for K = 2N samples, and as given in (5.5) and (5.3), are shown in the 
lower part of Figure 5.2. The eigencanceler was computed using r = 6 principal eigenvalues. 
The upper part of Figure 5.2 consists of histograms developed from 10,000 simulation runs. 
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A good fit is observed between the theoretical and the simulation curves. Figure 5.3 plots 
the probability of detection for the various methods, i.e., the average probability of detection 
versus the input SNR. 

The detection threshold TJT is found from the solution to (5.17) when the average probability 
of false alarm is set to 10-5. The probability of detection is computed using (5.20). The 
curve labeled "opt" is the optimal case obtained from (5.14). The probability of detection 
curves also show a good fit between theory and simulations. 

5.2    Discussion 
In this chapter we studied eigenanalysis-based detection for airborne surveillance radars 
and compared the performance to that of the SMI method. Analytical expressions for the 
receiver operating characteristics were obtained based on the asymptotic expansion of the 
distribution of the principal components of the covariance matrix and were corroborated by 
simulations. The results clearly indicate the higher convergence rate of the eigenanalysis 
method. Expressions were developed to characterize the robustness with respect to the 
pointing error. This model is a simplification of the more general case of random angle 
errors. 
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CHAPTER 6 

PERFORMANCE ANALYSIS USING EXPERIMENTAL DATA 

Conventional beamformers cancel the interference without considering a desired signal. 
A linearly constrained adaptive array, however, tries to preserve signals at a given angle 
and/or Doppler frequency. To preserve a presumed desired signal, a steering vector is formed 
using theoretical output of the antenna array under ideal conditions. This steering vector is 
used to calculate the weights for a given adaptive criteria, such that there is some gain in the 
direction of the desired signal . However, due to practical limitations the presumed steering 
vector and the true desired signal do not necessarily match. This mismatch, also known as 
the perturbation problem, causes signal cancelation when the optimum array processor is 
used. 
The perturbation problem, which has many sources, has been an active research topic. 
The perturbation due to pointing errors, mismatch between the presumed and true angle 
of arrival, was studied by Er [17]. Hybrid techniques were suggested by Habu [51] to 
overcome pointing errors. Another source of mismatch is the calibration errors that results in 
random gain and phase errors at every element. The gain and phase mismatches are caused 
by unmatched antennas and receiver electronics, producing a different response at every 
channel. Previous work on calibration effects includes the problem of small phase errors 
at each element [52], and the more general case of amplitude and phase errors [53, 54, 55]. 
Certain array processing criteria also requires a prior knowledge of the interference corre- 
lation matrix, i.e. the Weiner solution. In general, the true correlation matrix of the inter- 
ference and noise is not available and it needs to be estimated from a finite record of the data. 
The estimation error, due to training set size limitation, affects the performance of the array. 
Using a larger training set for a better estimate, may also result in problems if the data is 
not completely stationary. If the training data set includes the desired signal, the estimated 
correlation matrix has a desired signal component. If the desired signal component is large, 
the processor interprets the desired signal portion mismatched to the steering vector as inter- 
ference, and signal suppression is observed even with a small steering vector perturbation 
[15, 56]. 

6.1    The Mountaintop Data Package 
The Mountaintop Program was initiated to study advanced processing techniques and 
technologies required to support the mission requirements of the next generation airborne 
early warning platform. In this chapter, the radar and the data processing aspects such as 
calibration and pulse compression are discussed. 

6.1.1    Description of the Assets 
Two major assets of the Mountaintop Program are Radar Surveillance Technology Experi- 
mental Radar (RSTER) and Inverse Display Phase Central Array (IDPCA). RSTER is a 5 
meter by 10 meter vertically polarized array made up of 14 row elements with an independent 
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phase shifter, transmitter and receiver. This original configuration, with adaptivity in 
elevation, is referred to as the RSTER configuration. The antenna was designed to be 
mounted vertically to achieve azimuth adaptivity. This configuration is referred to as 
RSTER-90. The basic set up of the data collection is given in Figure 6.1. IDPCA was 
developed to overcome the challenge of providing a meaningful emulation of the airborne 
surveillance environment. For a fixed radar, IDPCA produces clutter returns with the same 
spatial and temporal characteristics as observed from an airborne surveillance platform. 
Since clutter profile in azimuth-Doppler space is due to the motion of the aperture's phase 
center, to effect the emulation one can move an antenna or deploy several antennas and 
move between them. Apparent motion occurs along the length of the array. The IDPCA 
is a transmit-only device and the clutter returns are received through the larger RSTER-90 
antenna. The effectiveness of the IDPCA's motion was demonstrated by comparing the 
clutters returns of IDPCA to clutter returns using a Lear jet [57]. 

6.1.2    Calibration 
Theory of array processing is developed assuming ideal elements (channels) with omni- 
directional, identical and equally spaced antennas and perfectly matched channel receiver 
electronics. However, to satisfy these ideal conditions is an impossible challenge. The 
hardware calibration is limited by the current available technology, but the calibration can be 
enhanced by using digital filters to compensate for the differences in the receiver electronics, 
and the antenna mismatches. In this section, the design of the digital calibration filters are 
discussed. 

Calibration is done in two stages: Receiver Calibration (RCAL) and Antenna Calibration 
(ACAL). RCAL covers differences in amplitude and phase ripple between channels at inter- 
mediate frequency (IF). ACAL compensates for amplitude and phase match differences 
between channels at radio frequency (RF). RCAL and ACAL files are recorded while two 
different, known test signals are injected into antenna/receiver hardware. For RCAL, a 
1 MHz LFM is injected into all channels of RSTER in the IF portion of the receiver, after 
the RF channel equalizer filters. During the injection of this test signal, data is recorded 
after A/D conversion and direct baseband quadrature sampling (DBQS) at a 1 MHz rate. 
For ACAL a 500 KHz LFM signal is injected at the antenna immediately after the duplexer 
assembly. Data is recorded after the A/D, using DBQS at 1 MHz sampling. Complex 
weights are determined from this data set in order to equalize the channels. 

6.1.2.1    Design of Receiver Calibration Filters 
The band limited receiver is modeled with a transfer function. RCAL files are used to design 
a transversal filter, which estimates the receiver transfer functions and equalizes to match 
each channel to the reference channel. The output of a transversal filter, as shown in Figure 
6.2 is given by the finite convolution sum 

Nt-l 

Vi(n) = J2 wtui(n - fc)> (6.1) 
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Figure 6.2 Transversal Linear Prediction Filter 

55 



where Nt denotes the number of tabs, u(n) is the input to the filter and wk are the weights 
calculated using the least squares (LS) algorithm. The output of the first antenna, ui(n), is 
used as the reference signal. To calculate the weights for the ith element, the LS algorithm 
minimizes the power of the error function given by 

JVt-l 

e,(ra) = ui(ra) - ^ w*kUi(n - k). (6.2) 
k=o 

Assuming N samples of data are recorded, it can be easily shown [58] [59] that the error 
function, et(n), is minimized when 

where 

w,- = 

Wifi 

Wi,\ 
Ui 

H 

Ui(Nt - 1)       Ui(Nt) 
Ui(Nt-2)   Ui(Nt-l) 

u*x(Nt - 1) 

«i(W) 

[^(N-l) 

Ui(N-l)  ■ 
Ui(N - 2) 

«,■(0) u,-(l)        •••   Ui(N-Nt) 

and (+) denotes pseudo-inverse for an over determined system given by 

A+ = (AHA)-aAH. 

(6.3) 

(6.4) 

(6.5) 

(6.6) 

6.1.2.2    Design of Antenna Calibration Filters 
The antenna calibration is the second stage of the calibration. Amplitude and phase 
correction is utilized to overcome mismatches between signals at the receiver inputs. The 
antenna mismatch is modeled as a single complex weight, since the antenna has a large 
bandwidth. A known test signal is injected immediately after the duplexer assembly, and 
the output is recorded at the output of A/D into ACAL files. Since the ACAL signal 
travels through both the channel front end and the receiver portion, prior to determining 
the antenna calibration weights, the data is equalized using RCAL weights. This equal- 
ization step is only needed if the injected test signal is LFM, and not needed if it is a single 
frequency. To calculate the single weight needed for the ith element of the array, (6.3) is 
used with Nt = 1. Again, the output of the first antenna, ui(n), is used as the reference 
signal. 

Figure 6.3 illustrates the effects of the calibration process. Shown is CPI 1 of ACAL file 
acal585vl.mat before and after calibration. In Figure 6.3(a), the magnitude of channel 
outputs are plotted on top of each other. Every channel's output has a different shape and 
amplitude for the same injected test signal. In Figure 6.3(b), the same data is plotted after 
receiver equalization using RCAL weights designed with the RCAL file rcal585vl.mat and 
Nt = 31. Compared with Figure 6.3(a) the equalized channel outputs have the same shape 
but different amplitude.   The amplitude differences are calibrated using ACAL weights, 
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which are designed using the ACAL file after receiver calibration. In Figure 6.3(c) the 
output of the channels are plotted after the antenna calibration, where all the outputs have 
the same shape and amplitude. 

6.1.3    Pulse Compression 
In order to receive measurable target returns, the transmitted pulse must have enough 
energy. A signal with a larger amplitude may be transmitted to increase the energy of 
the signal but the amplitude of the signal is limited by the transmitter power. An other 
approach is to use a longer pulse, but this causes problems with the resolution of the radar. 
For example, if a 100 pts pulse is transmitted, a 15 km resolution would result which is not 
practical. The Mountaintop radar uses pulse compression to achieve high range resolution. 
The radar transmits a wideband Chirp pulse. The chirp radar concept is described in detail 
by Klauder [60] and Wehner [56]. Samples of the complex envelope of a chirp signal is given 
by the relation 

s{n) = .ei2*(«m2/2-»/2) n = 0,1, • • •, iV - 1, (6.7) 

where N is the number of samples taken during the pulse and assuming Nyquist sampling 
rate, w = 1/(N — 1). A plot of the transmitted pulse envelope, pulse frequency, and RF 
wave form as a function of time, is given in Figure 6.4 (a), (b), and (c), respectively. The 
matched filter to this pulse is given by 

s(n) = eiM«"2/2+n/2) n = -N + l,-N + 2,---,0. (6.8) 

The output of the matched filter is plotted in Figure 6.5. To generate these plots, a 100 (is 
pulse is used with a 1 /is sampling period which results in 100 samples, N = 100. Using 
this method the 100 {is pulse is compressed to give a resolution of 1 fis which corresponds 
to 150 m. The largest sidelobe is 13 dB below the main lobe. Windowing can be used to 
get lower sidelobes, but this will cause a wider mainlobe. In this chapter, none of the plots 
generated using the experimental data used windowing on pulse compression. 

6.2    Joint Domain and Cascade Processors 
This section gives some background into joint domain and cascade processing. Also we shall 
introduce and define some parameters that will be used through out this chapter. 
Define the data matrix X which is made up of NtxNs samples of returned data and is given 
by 

zi.i     a?i)2    • • ■    x1>Na 

«2,1       X2,2      ■ ■ ■      X2,N, x = 

XNt,l     xNt,2     • • •     XNt,N, 

If a target is present at a given range cell, X has the form 

(6.9) 

X = Xd + X; + Xn, (6.10) 
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where Xd is the target signal (desired signal), X; is the interference, and Xn is the noise 

matrix. If a target is not present in a given range cell then 

X = Xt- + Xr (6.11) 

The columns of Xd are samples in time that give information about the velocity of the 
target. The rows of this matrix are samples in space that give information about the angle 
of the received signal. In the ideal case, when the spatial channels are co-linear, identical, 
omni-directional and equally spaced with spacing d, the entries of matrix Xd are given by 

(6.12) 

where a\ is the desired signal power, ips is the normalized spatial frequency and V>t is the 
normalized Doppler frequency. The normalized spatial frequency is given by 

1ps = 
2ir d sin 6d 

Ä        : 
(6.13) 

where A is the wavelength of the transmitted signal and 0d is angle of the target.   The 

normalized Doppler frequency is given by 

lfc = 
2vPRI 

A 
(6.14) 

where v is the radial velocity of the target. The desired signal component of the matrix X, 

under ideal conditions, can also be written as 

CT(iStSs    , (6.15) 

where st, the Nt x 1 normalized temporal steering vector, and ss, the Ns x 1 normalized 

spatial steering vector, are given by 

St 
y/Nt 

1 

pj27T(A'-l)V>t 

and s« = 
fK 

l 
ej2ir^s 

(6.16) 

The N„Nt x 1 normalized joint-domain steering vector is formed by stacking the transpose 

of the rows of Xd and it is given by 

Sj=-st®s„ (6-17) 

where ® is the Kronecker product. Assuming PRI, d, and A have been properly chosen to 
meet the Nyquist sampling criterion, 0S and ipt are confined within [-0.5,0.5]. 
For space-time radar, joint-domain and cascade processing are two possible configurations. 
With the joint-domain linear processor (see Figure 6.2(a)), the data is processed as follows, 

^•=w/Xj, (6.18) 
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where Wj is the NsNt x 1 joint domain weight vector and Xj is the NsNt x 1 joint-domain 
data vector formed by stacking the transpose of the rows of the data matrix X. There 
are two cascade configurations: time-space (T-S) and space-time (S-T). The T-S config- 
uration consists of .K-dimensional temporal processing followed by iVs-dimensional spatial 
processing. S-T configuration processes the data in the opposite order. Block diagrams of 
cascade configurations are shown in Figure 6.2 (b) and (c). In the T-S configuration the 
input to the temporal processing stage is data matrix X. The output of this stage is the 
JVsxl spatial data vector: 

xs = XTwA (6.19) 

where w< is the Nt x 1 temporal weight vector and (*) means complex conjugate. The output 
of the temporal processor is used by the spatial processor, which produces 

Vu = w.*x., (6-2°) 

where ws is an Ns x 1 spatial weight vector. Similarly, for the S-T configuration the output 
of the spatial beamformer is 

xt = Xw/, (6.21) 

where xt is the Nt x 1 temporal data vector and the output of the temporal beamformer is 

rjst = w«*x,. (6.22) 

Both of these cascade configurations may use different adaptive criteria for processing in both 
domains. The performance of the cascade should approach that of the optimum processor 
with the same configuration. Cascade processing, especially the S-T configuration, has been 
very popular in recent years, but it has been shown that joint-domain processing performs 
better than both cascade configurations [61]. 
Later in this chapter, the joint-domain and the post-Doppler processors are applied to the 
Mountaintop data. The post-Doppler processor has a cascade configuration with a non- 
adaptive temporal processor followed by an adaptive spatial processor. 

6.3    Array Improvement Factor 
Under the assumption of uncorrelated signal, interference and noise, the correlation matrix 
of the data vector x, which may have the form of Xj, xt or xs, is given by 

R = E [xx*] = <rd
2Rd + <7?R,- + (CT

2
JN% (6.23) 

where N is the length of the data vector x, a\ is the desired signal power and Rd is the 
autocorrelation of the desired signal given by 

Rd = XdxA (6.24) 

R, is the autocorrelation of the interference, of is the interference power, and a\ is the power 
of the white Gaussian noise. Rd and R- are normalized to have a trace of one. 
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The output power of the beamformer as a function of w is given by 

2' 
PBF(w)   =E •wHx = E WffXXHW 

wHRw (6.25) 

= ajwHRdw + of wHRtw + (al/N)wHw. 

The first term of PBF is the signal power and the remaining is the interference-plus-noise 
power. Signal-to-interference-plus-noise ratio at the output of the beamformer is given by 

SNIRBF = 
°l wHxd SNR wHxd 

(6.26) 
afwHRiW + (al/N)wHw     INRw"R;w + (1/A^)wffw' 

where SNR = o\fol and INR = af/al 
The array improvement factor (AIF) is defined as the ratio of SNIRSF to SNR at the input 
of the beamformer as a function of the weight vector: 

2 

G(w) 
W^Xrf 

.w 
(6.27) 

wHR,-+ni 

where R;+„ is the interference-plus-noise correlation matrix defined as 

Ri+n = INRRi + (l/iV)I. (6.28) 

Assuming xd and R,-+n are known, SNIR^ is maximized by the Weiner solution given by 

w0 = fcR-^Xd and G(w0) = x/R^Xd, (6.29) 

where k is a gain constant and does not have an effect on the AIF. To study the behavior 
of the AIF, first consider a noise only correlation matrix (of = 0), For this case the weight 
vector and the AIF are given by 

w0 = kxd and Gn(w0) = N. 

With a single interferer (R; = x.-x^), inverse of the correlation matrix is given by 

Rr^ = (INRx,-x,-H + (1/iV)!)-1 = 7VI 
INR-X 

1 + INR • L 
XjX. 

H 

and the AIF is given by 

Gi+n(w0) = iV-- 
INR-X 

Xd
HXi 

(6.30) 

(6.31) 

(6.32) 
+ INR • L 

Gi+n is confined within [(N — 1), N]; the maximum value is achieved when the INR = 0 or 
x^X; = 0 and the lower limit is obtained when the INR = oo and x/'x; = 1. 
However, in many cases of practical importance the available information about the desired 
signal vector is imprecise. Also, the correlation matrix of interference-plus-noise is estimated 
using a finite set of data. These two practical problems cause a decrease in performance 
of the Weiner solution. Later, the AIF will be used as the figure of merit to compare the 
performance of the SMI and the eigencanceler methods under these conditions. 
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6.4    Array Improvement Factor Calculations 
In this section the effects of calibration errors in terms of the AIF dependency on the 
desired signal component of the correlation matrix are studied. For analytical tractability, 
the special case of a single interference and the spatial processor is considered. The results 
are provided in terms of the SNR, INR, and the projections between the desired, presumed 

and interference steering vectors. 
Consider the estimated correlation matrix given by 

R = (728,8? + (7?S,-S? + (0*JN)I, (6.33) 

where aj, of, of are desired signal, interference and noise power, and sd and s,- are desired 
signal and interference vectors, respectively. For the spatial processor the presumed steering 

vector has the form 
1 

= i/l/N 

j27rVn 

>2ir(JV-l)*m 

(6.34) 

where N is the number of antenna elements. xjjm is the normalized spatial frequency of the 
presumed look direction, and it is related to the presumed target angle, 9m, by: 

tßs 
d sin 9 A 

~X-' (6.35) 

where A is the wavelength of the transmitted signal and 9d is angle of the target. The desired 

signal vector has the form 

Sd = Ti c 

cxe 

CN-ie 

}2x(.N-l)iPd 

and (6.36) 

where c is a complex random variable with Gaussian-distributed magnitude and phase. The 
vector c is used to model the amplitude and phase errors. Assuming good calibration, both 

the magnitude and the phase of c\ have small variance. The mean of the magnitude is yfl/N 

and the mean of the phase error is zero. In case of the ideal calibration, q = yjl/N. The 
difference between the true target angle and presumed target angle, 9m-9d, is the pointing 
error. Under ideal conditions (no errors), the desired signal vector equals the presumed 
steering vector. Since the interference signal goes through the same channels as the desired 

signal, the interference steering vector has the form 

s« = TT 
CjC 

}l*$i 

CN-Ie 

j2n(N-l)il>i 

(6.37) 
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where fy is the normalized spatial frequency of the interference. The projections between 
the steering vectors are defined as 

,HC Pmi — SmSi pa = sf Sd. pmd = s^Sd, pmi = s'^Si        and 

Without loss of generality, assume a\ = N. Then, R can be written as 

R = «rfos? + afsisf + I 

In terms of its eigenvectors, R is given by 

R = (Ax - l)qiqf + (A2 - l)q2qf +1, 

(6.38) 

(6.39) 

(6.40) 

where q is the Ith eigenvector and A/ is the Ith eigenvalue for / € [1,2]. For / € [3, iV], the 
eigenvalues are equal to 1. The signal-plus-interference subspace is 2-dimensional and the 
noise subspace is (N — 2)-dimensional. Using erf, aj, and pa (see Appendix A), first two 
eigenvalues of R are given by 

Al,2 — 
°$ + °i 1+     ,      4"?o*d(l - \Pld\2) 

+ 1. 

The eigenvectors corresponding to these eigenvalues are given by 

Sd + ai,2s; 
qi,2 

\/l + |a1,2|
2 + 2fie(Q1)2^)' 

where a is 

ai,2 = 
Ai,2 - <rj ViPia 

rfPid A1)2-<7?' 

The inverse of the estimated correlation matrix is given by 

R^I-Äqiqf-ZWlf, 

where 

Ä,2 = 
A1|2 - 1 

Ai,2 

The AIF for SMI is calculated using (6.27) and (2.7) as follows: 

^Jsmi  — 

s*R7sd 

where 
Ri+n = <7?S;sf + I. 

The numerator of Gsmi is given by 

s^R^Sd    = pmd - fts^qiq? sd - /?2s£q2qf sd 

(6.41) 

(6.42) 

(6.43) 

(6.44) 

(6.45) 

(6.46) 

(6.47) 

(6.48) 
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and the denominator is given by 

S^R;1 Ri+nK1 Sm =     1 + <TJ \pmi f 
+(# - 2ßx + ß\cj] 

+(ß* - 2ß2 + ftaf 

qfsi >^qiqfs 
!)s£q2q?s 

+2ß1ß2a?Re(s%q1q?ssss
Hq2q%srn) 

-2crfß1Re(ss
Hqiqfsmpmi) 

-2afß2Re(ss
Hq2q^smpmi). 

(6.49) 

In the same manner, the array gain for the eigencanceler is calculated using (6.27) and (4.2), 
with r = 1 (single interference), as follows: 

s£(I - qiqf )sd 

Gei9      s£(I - qiqf )R,-+„(I - qiqf)s, 

The numerator of Geig is given by 

s£(I - qiqf)sd Pmd - s„qiqf sd 

(6.50) 

(6.51) 

and the denominator is given by 

w? Ri+nweis = 1 + (rf\pmi\2 + [p\ sfqi -1) s^qi - 2Re{afpmisf qiqfsm).      (6.52) 

Jeig are To study the effects of the SNR, INR, calibration and pointing errors, the Gsmi and Ge 

plotted. For all of the plots a\ = N, where N = 14, and the Gsmi and Geig are normalized 

byiV. 
In Figure 6.7, Gsmi and Geig are plotted as a function of the presumed target angle, 6d, for the 

case of ideal phase and gain calibration, c,- = y/l/N. In Figure 6.7(a), the correlation matrix 
has no signal component, trj = 0. Under these conditions, SMI is the optimal solution, since 
R is the true correlation matrix of the interference and Gaussian noise. The Gsmi and Geig 

overlap for erf = 1400 (INR = 20 dB). In Figure 6.7(b) the desired signal component is 
present in the correlation matrix, a\ = 140 (SNR = 10 dB). For this case, SMI works only 
if 0m = 6d. A slight pointing error causes a large decrease in the AIF. The eigencanceler, 
however, is much less affected by the increase of the SNR 
In Figure 6.8, effects of the phase errors, and pointing error are studied. There are no 
amplitude errors, |c»| = \J\JN, and the phase errors are modeled as a zero-mean Gaussian 
random variable. Phase errors are averaged over 50 iterations. As the standard deviation 
(STD) of the phase errors increases, Gsmi starts to decrease, due to the mismatch between 
the desired and presumed steering vectors. The mainlobe is again very narrow due to the 
presence of the desired signal. The eigencanceler is very robust against the phase errors as 
seen in Figure 6.8(b), where the mainlobe is hardly changed even for high phase errors. 
In Figure 6.9, effects of the amplitude errors and pointing error are investigated. There are 
no phase errors, Lc\ = 0. The STD of the amplitude errors are normalized by the mean of the 
amplitude, which is 1/y/N. Again the SMI method performs if there are no pointing errors 
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and the STD of the amplitude errors are very small. Performance is degraded, however, 
if the STD of amplitude errors are increased or a small pointing error is introduced. The 
eigencanceler is again robust with respect to amplitude errors and maintains the ideal shape 
for the mainlobe shape even with amplitude errors of 10% STD from the mean. To generate 
these plots, 50 iterations are used for every point. 
In Figure 6.10, effects of the desired signal power, a}, on the pointing error is studied. There 

are no phase and amplitude errors, c\ = yJl/N. When the <J\ = 0, both Gsmi and Ge;s have 

the same mainlobe as Figure 6.7(a), which is the ideal solution. As the desired signal power 
is increased, the SMI's mainlobe becomes narrower and the performance is decreased for 
even a small pointing error. The eigencanceler's performance is acceptable up to a SNR of 
10 dB, but Geig goes down rapidly as the SNR gets closer to the INR. This behavior is 
due to the shift of the first eigenvector, which starts to look like the desired signal as the 
SNR approaches the INR. When the SNR is equal to the INR, the eigencanceler fails even 
when there are no pointing errors, because the first eigenvector has a large projection on the 
desired signal, which causes desired signal cancelation. 
In Figure 6.11, effects of the desired signal angle on the pointing errors is plotted. The desired 
signal angle does not have a very significant effect on the shape of the mainlobe. As seen in 
Figure 6.11(b), the mainlobe gets slightly larger as the desired signal angle is increased. This 
is due to the nonlinear mapping, from the physical to the electrical angle, given by (6.35). 
As 6d gets larger, the electrical pointing error is smaller for the same physical pointing error. 
Therefore, the mainlobe related to the electrical pointing errors becomes larger. 

6.5    Mountaintop Data Analysis 
Analytical results presented in the previous sections show that the eigencanceler is robust 
with respect to steering vector perturbations. In this chapter, the performance of the eigen- 
canceler and SMI are compared using the Mountaintop dataset. After describing the specific 
data file used, range detection with corresponding antenna response and angle detection of 
the target are studied. Training sets of different sizes from different regions are used. The 
last section considers the signal suppression issue when the cell under test is included in the 

training. 

6.5.1    Description of the Data Files 
Data analysis was done on IDPCA data recorded on Feb 10, 1994 at North Oscura 
Peak, White Sands Missile Range (WSMR), New Mexico. For this data set, namely 
t38pre01vl.mat, IDPCA was used to emulate clutter at 245° and 156 Hz in Doppler. The 
injected target is at 154 km in range, 275° in angle, and 156 Hz in Doppler. The bore 
side angle is 260°. The transmitted pulse is an LFM signal with 500 KHz of bandwidth, 
a central frequency of 435 MHz, and a 100 fis duration. Distance between the elements is 
half the wavelength, d = A/2. Recorded data is sampled at the Nyquist rate of 1 MHz. 
The PRI is 1600 [is, which gives a pulse repetition frequency (PRF) of 625 Hz. Data is 
recorded from 865 ßs to 1298 fis after the pulse is transmitted, corresponding to range 
cells from 130 km to 195 km with a range resolution of 150 m. Data is recorded into CPI's 
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Figure 6.12 Magnitude Plot of Range Returns on IDPCA Data, CPI 6, PRI 1 

with 16 PRI's. Using (6.14), the normalized Doppler frequency of the target is 0.250. Since 
14 antennas are employed, there are 14 samples in space. For each range cell a 16 x 14 
space-time data matrix is formed. Using (6.35), the normalized spatial frequency of the 
target is 0.129 and the normalized spatial frequency of the interference is —0.129. Notice 
that both the target and the interference are at the same Doppler frequency, and they are 
only separated spatially. Using CPI 6 of the data, the magnitude of the first PRI as a 
function of range is plotted in Figure 6.12. The returns from the ranges are plotted with 
respect to the sky noise level. The clutter is located from 140 km to 165 km. In Figure 
6.13, the Doppler-azimuth plot of the target range cell at 154 km is plotted. As expected, 
the energy is concentrated at 156 Hz and 245° due to the interference power. To study 
the eigenvalue distribution of joint-domain processing, each range matrix is reshaped to 
a joint-domain stacked data vector of size 224 x 1. To estimate the correlation matrix, 
1200 training data vectors from matrix CPFs 6, 7, 8 and 9 were used. The eigenvalues of 
this correlation matrix are plotted in Figure 6.14(a), where the few interference eigenvalues 
are well above the sky noise level. For post-Doppler processing, each range data matrix is 
first processed temporally with the non-adaptive weight vector, which has the form of st in 
(6.20). Then beamforming algorithms are applied to the 14 x 1 spatial data vectors. The 
correlation matrix of post-Doppler data is estimated using 300 data points from CPI 6. The 
eigenvalues are plotted in Figure 6.14(b), where most of the energy is concentrated in the 
first 4-5 eigenvectors. 
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Figure 6.13 Doppler-Azimuth Plot for Target Range Cell 

6.5.2    Target Range Detection 
In this section, the target angle and Doppler frequency are assumed to be known and the 
target range is detected. The data is plotted relative to sky noise. Sky noise data, namely 
ncal585vl.mat, is recorded right after the experiment with the transmitter turned off. To 
calculate the sky noise level at the output of the beamformer, the weights calculated for a 
specific experiment are applied to the sky noise data. The mean of the sky noise output is 
taken as the sky noise reference. If the beamformer is adaptive, the weight vector changes 
with the training region and number of points used. For every plot, the sky noise level is 
updated using the corresponding weight vector. For these plots CPI 6 is used, which has 

300 data vectors. 
First, the joint-domain processor with 14 antenna elements and 4 PRIs is studied. The joint- 
domain data vector for this case is 56 x 1. In Figure 6.15(a), training is done over 300 points 
from 135 km to 175 km, and the target range cells are excluded from the training set.The 
target is located at 154 km and the power of the target spills over 5 range cells. Clearly, the 
non-adaptive beamformer fails due to a large sidelobe. Both SMI and the eigencanceler have 
the same performance. But this is not a realistic approach since a-priori knowledge of the 
target location was used when estimating the correlation matrix. A more realistic approach 
is given in Figure 6.15(b), where all the data vectors are used for training, including the 
target region. Presence of the target region in the training set causes an increase in the 
desired signal component of the estimated correlation matrix. The SMI method fails to 
preserve the desired signal, and signal cancelation of 12 dB is observed. Performance of the 
eigencanceler is not affected by high signal power in the estimate. 
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Next, the post-Doppler beamformer is studied. After temporal processing, the post-Doppler 
data vectors are 14 x 1. In Figure 6.16(a), training is over 300 data points, and the target 
region is not included in the estimate. The performance of the post-Doppler processor is 
better than the joint-domain processor because both the desired signal and the interference 
have the same Doppler frequency. The joint-domain processor, which is adaptive both in 
time and space, cancels the interference temporally and spatially. Because the interference 
and target signal are in the same Doppler bin, some signal power is lost. The post-Doppler 
processor performs cancelation in the spatial domain, where the target and interference 
are separated. Therefore, the post-Doppler processor performs better for this specific data 
set. In Figure 6.16(b), the target region is included in the training. The SMI method is 
affected by the high desired signal component and the performance is degraded by 7 dB. 
The eigencanceler, on the other hand, is not affected by the presence of the desired signal, 
as shown analytically in section 6.4 and plotted in Figure 6.10. In Figure 6.17, training 
with 50 data points is considered. In part (a), the training is done from 145 km to 152 km, 
which is outside the target region. Both adaptive methods cancel most of the clutter. The 
non-adaptive beamformer output does not change due to the fixed weights, and it is plotted 
again as the clutter reference. An important observation is that the SMI method performs 
more cancelation around the training region. This is due to the limited number of training 
samples, which causes a correlation matrix to be a good estimate of the training region, 
but very bad estimate globally. In parts (b) and (c), the training is done around the target 
region from 150 km to 158 km. As before, when the target is omitted from the training 
set, a very good performance is observed. Again the training region is nulled by the SMI 
method, where the eigencanceler lowers the output but does not null out. In part (c), where 
the target is included in the training set, the SMI method fails by treating the desired signal 
as interference. Unlike the SMI, the eigencanceler does not null out the desired signal, but 
the interference cancelation of the eigencanceler is degraded. Presence of the desired signal 
shifts the largest eigenvectors towards the desired signal, causing a corrupt estimation of 
the interference subspace. In Figure 6.18, training with 28 points-double the vector size-is 
considered. This is the lower limit for SMI to work. In part (a), a deeper null is placed by 
the SMI method in the training region. The performance of the eigencanceler is better than 
SMI, which shows that the eigencanceler has a faster convergence rate. In part (c), both 
methods fail. The signal cancelation problem of the SMI is magnified. The eigencanceler 
still manages to save some of the signal power, but fails to cancel the interference. In fact, 
interference cancelation is worse than with the non-adaptive method from 140 km to 150 km. 

6.5.3    Antenna Pattern 
In this section, the spatial response of the weights calculated for the post-Doppler range 
plots of the previous section is studied. Assuming an ideal desired signal, the spatial data 
vector will have the form of ss in (6.34). The normalized spatial frequency, V>., is related 
to the physical angle by (6.35). The antenna patterns are generated by applying a given 
weight vector to steering vectors for different angles. A desirable weight vector has a main 
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lobe in the direction of the target and a null in the direction of the interference. In this data 
set the target angle is 275° and the interference angle is 245°. 
In Figure 6.19, the response of the weight vectors calculated with 300 training points are 
plotted. The non-adaptive weight vector, plotted for reference, is the presumed steering 
vector for the desired signal. Around the interference angle, both adaptive beamformers have 
a lower sidelobe than the non-adaptive beamformer. In part (b), the target region included in 
the estimate, the SMI method puts a small notch on the main lobe causing the performance 
degradation observed in the range plots of the previous section. The eigencanceler's sidelobes 
resemble the non-adaptive weight vector, except in the interference region. Comparing both 
parts, the eigencanceler is not affected by the presence of the desired signal in the estimate. 
In Figure 6.20, the response of the weight vector calculated with 50 training points is plotted. 
In part (a), a decrease in the training set number has affected the SMI method with increased 
sidelobes, but the eigencanceler manages to keep the same shape. Even though interference 

cancelation of the eigencanceler is degraded, we also observe from range plot for the same 
training that the main lobe is still in the right direction and the sidelobes are relatively low, 
keeping the shape of the steering vector. Compared to part (b) of the previous figure, the 
small notch introduced by SMI on the desired signal in part (c) is even deeper. 
When the training set is lowered to 28 range cells, see Figure 6.21, the SMI method does not 
give a desirable antenna pattern even for the case of training outside of the target region. 
The eigencanceler's performance is still preserved in part (a). In addition, as mentioned 
before for the range plots with the target included in training in part (c), both adaptive 
methods fail and performance is worse than the non-adaptive beamformer. 

6.5.4    Target Angle Detection 
In this section, the target range and the Doppler frequency are assumed to be known, and the 
target angle is detected. The post-Doppler data vector for the target range cell at 154 km 
is used to detect the target angle. First the correlation matrix is estimated for a given 
training region, and then the weight vectors are calculated using different presumed desired 
signal angles. For this data set, the target is at 245°. In Figure 6.22, the training is done 
using all 300 range cells. The non-adaptive beamformer fails, due to a large sidelobe, and 
points in the direction of the interference. Both SMI and the eigencanceler detect the right 
angle for the target. When the training is lowered to 50 cells, see Figure 6.23, the sidelobes 
of the SMI are increased. The performance of the eigencanceler is almost unchanged. In 
Figure 6.24, the training support is lowered to 28 cells. The performance of SMI is degraded 
considerably and the eigencanceler's performance is superior. Even with the target included 
in the training set, the eigencanceler manages to detect the target, even though it is only a 
few dB above the interference. The sidelobes of the eigencanceler are much lower than the 
sidelobes of the SMI. 

6.5.5    Signal Cancellation 
In this section, signal cancelation due to the high desired signal component of the estimated 
correlation matrix is studied. In Figure 6.25(a), the target range cell output relative to 
sky noise, as a function of the number of training points, is plotted.  The target region is 
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included in the training set, therefore, when the training support is decreased the desired 
signal component increases. The eigencanceler performs 4 dB better than SMI when the 
training set is large. When the training set is decreased, the performance of the SMI is 
affected more than the eigencanceler's performance is. This plot only provides information 
about how much the desired signal is preserved, but it does not give any information about 
how much the interference is cancelled. To study clutter cancelation, the output at the 
target range is plotted with respect to the background noise at the beamformer's output 
around the target region. The background noise level is calculated by taking the mean of 
the beamformer's output from 142 km to 165 km, over 150 points. The target region is not 
included in the calculations of the mean. Comparing part (a) to part (b), the performance 
of SMI approaches that of the eigencanceler. This shows that SMI cancels the interference 
better than the eigencanceler, but the performance is still inferior because of the signal 
cancelation effect. In Figure 6.25(c), instead of using a fixed region for calculation of the 
mean as in part (b), the background noise power is calculated using exactly the same region 
as the training. The performance of the SMI is improved even more because SMI cancels 
interference in the training region more effectively, but it performs poorly cancelling the 
interference outside the training region. This was also observed in the range detection plots 
where a null was placed around the training region, as in Figure 6.16(b). In conclusion, SMI 
cancels the desired signal as the number of training points is decreased. 
The eigencanceler's is a better estimator of global interference than SMI, even with a 
localized correlation matrix. The eigencanceler uses the eigenvectors that correspond to the 
largest eigenvalues, which is a better representation of the global interference. On the other 
hand, SMI uses the inverse of the correlation matrix, which involves all the eigenvectors. 
This is a much better estimate locally, but it is not very effective globally. 

6.6    Discussion 
In this chapter, the signal cancelation effects were studied when there is a mismatch between 
the true desired signal and the presumed theoretical desired signal. Adaptive radar is 
susceptible to signal cancelation effects when the target signal is included in the training 
data and in the presence of pointing/calibration errors. It was shown, by analysis and illus- 
trations from the Mountaintop dataset, that the SMI method is very sensitive to the presence 
of the desired signal component in the estimated correlation matrix, and performance is 
degraded even with small pointing/calibration errors. The eigenanalysis-based adaptive 
radar is proven to be much more robust than the SMI method with respect to signal cance- 
lation effects. 
The design of calibration filters to minimize the mismatch was explained and the results of 
the calibration filters were illustrated on the experimental data. Also the pulse compression 
method to achieve high resolution was explained. 
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CHAPTER 7 

PERFORMANCE COMPARISON OF REDUCED RANK STAP 
TECHNIQUES 

Recent publications have shown the advantages of various forms of reduced-rank methods 
over the full-rank SMI method [22, 1, 62]. The sample support required by reduced-rank 
processing is only K « 2r, where r is the rank of the interference to be rejected. Equivalently, 
for r <^ N and for the same sample support, the SNR loss associated with reduced-rank 
methods is smaller than for the SMI. 
In this chapter we review and compare several reduced-rank methods. First, we first 
formulate the reduced-rank minimum variance beamformer (RR-MVB), which utilizes the 
principal components of a specified matrix transformation. RR-MVB is equivalent to the 
reduced-rank generalized sidelobe canceler (GSC). Another class of reduced-rank methods 
are based on the cross-spectral metric (CSM) [63, 64]. Those are also presented in the GSC 
context. The last of the reduced-rank methods reviewed is the eigencanceler [1]. It is inter- 
esting to note that reduced-rank methods are generally evaluated by the error they produce 
with respect to full-rank adaptive processing. When the true covariance matrix is known, 
reduced-rank methods are suboptimal to the Wiener solution. However, our interest in 
those methods arises since it has been shown that when the interference is contained within 
a subspace of the signal space, and the interference+noise covariance matrix is estimated 
from a dataset with limited support, reduced-rank methods actually outperform full-rank 
adaptive processing. This is explained by the presence, in addition to thermal noise effects, of 
errors resulting from the estimation process. Reduced-rank processing suppresses estimation 
errors at the cost of a bias in the SNR. The net effect, however, is a significant performance 
improvement for cases when the interference may be modeled as low-rank. Reduced-rank 
methods are clearly important for STAP radar, where a large number of degrees of freedom 
may be available. For a uniform array and for fixed PRF, the space-time clutter covariance 
matrix is essentially low-rank due to the inherent oversampling nature of the STAP archi- 
tecture. Hence, the space-time radar problem is well suited to the application of techniques 
that take advantage of the low-rank property. 

7.1    Reduced Rank Processing with Known Covariance 
A diagram of the reduced-rank MVB is shown in Figure 7.1. 
The full-rank MVB weight vector is obtained as a solution to the optimization problem: 

min wHRw        subject to        s^w = 1, (7.1) 

where R = E XfcX^ , X& are snapshots of the secondary data, and s is the steering vector. 
With RR-MVB, the vector x* is pre-processed by a full column rank N xr matrix transfor- 
mation T. The RR data is then the r x 1 vector Zk = THXfc, the RR covariance matrix is 
THRT, and the RR steering vector is t = THs. The RR-MVB weight vector is the solution 
to H 

min wH (THRT) W        subject to (T
H

S)    W = 1, (7.2) 
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Figure 7.1 Reduced-rank MVB. 

Figure 7.2 Reduced-rank GSC. 

and is given by the r x 1 weight vector 

w = k(THRTy1THs, (7.3) 

where k = I sHT (THRTJ     T^s 1     . Based on this weight vector, it is easy to show that 

the optimal SNR, fi, is given by 

,-i 
p = sHT (THRT)    TH

S, (7.4) 

where to simplify notation, it is assumed that the target power a\ = 1. 
The reduced-rank GSC is shown in Figure 7.2.       From the figure it is observed that the 
output can be expressed 

y = yc (k) - ya (k) = wf x* - wf UHAxk, (7.5) 

where wc, the weight vector of the nonadaptive portion, is just the steering vector wc = s, 
wa is the adaptive weight, the matrix U is a full column rank transformation, and A is 
set such the MVB and GSC methods are equivalent. The weight vector wa is found as the 
solution to the unconstrained optimization problem 

min (s - A^Uwa)   R (s - AffUw„) . 

The overall GSC weight vector is then given by 

w = (lN - AHV (U^ARA^U)"1 UHAR) S, 

(7.6) 

(7.7) 

where I/v is the iV-dimensional identity matrix. In [65] it is shown that for the MVB and 
GSC methods to be equivalent, the following conditions need to be met: (i)the matrix A 
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must block the look direction, As = 0, (ii)sHs = 1. Assuming that A has full column rank, 
and that s is the only vector in the null space of A, the dimensions of A are (N - 1) x N. 
Consequently, the rank reducing matrix U is (N - 1) x r. Multiple linear constraints can be 
incorporated in A resulting in a null space of dimension equal to the number of constraints. 
The output SNR (when target power a2

s = 1) is given by 

fi = (s*Rs - s"RA"U (\JHARA"U) _1 VHARs) ~* (7.8) 

Various choices of the rank reducing transformation U are now considered: 

1. The goal is to maximize //. In turn, this is achieved by maximizing the term 77 = 

sffRAffU (U^ARA^U)" U^ARs. For a given reduced rank r, r\ is optimized by 
a transformation U that meets the relation 

A*U = Qa, (7.9) 

where Qi consists of the r principal eigenvectors of R. Assuming that the (N - 1) x N 
signal blocking matrix A has full column rank, the elements of U can be obtained 
from the solution of a least-squares problem. It is easy to show that with this choice 
ofU: 

ti   =   (s^Rs-s^QxAiQfs)"1 

=   sHQ2A2-1Qfs. (7.10) 

2. To avoid the complication of a least-squares problem, let the matrix U be restricted 
to consist of r of the (N - 1) eigenvectors of Ra = ARA, where Ra = QjAiQi + 
Q2A2Qf, and rank (QA = r. A natural choice would be to let the rank reducing trans- 

formation consist of the r principal eigenvectors of Ra, i.e., U = Qx. A less intuitive, 
but optimal approach is suggested in [63, 64]: construct U from the r eigenvectors of 
Ra that maximize the quantity 

qf ARs 2 

T      , (7-n) 
A; 

where qi5 X,- are respectively eigenvectors and eigenvalues of Ra. In the references, this 
method is referred as the cross-spectral metric (CSM) method. 

3. Principal components decomposition, such as considered above, is data dependent. 
Fixed, reduced-rank transformations can be constructed by selecting the principal 
components of the discrete Fourier transform (DFT) or the discrete cosine transform 
(DCT). The cross spectral metric can also be used in conjunction with these fixed 
transforms [63, 64]. 

Rank-reducing transformations are now evaluated in the MVB framework. Consider the SNR 
at the MVB output, as given by (7.4). When the transformation T is unitary, it has no effect 
on the output SNR, and p = sHR_1s =/xmax. For any N x r rank reducing transformation 

T, r < N, n = sHT (TH
RT)~ T

H
S < ^max. Specific examples are considered below. 
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1. Consider how Case 1 of the GSC translates to the MVB framework. By substituting 
(7.9) in (7.7), we obtain the equivalent MVB weight vector 

w (l*-QiQf)s. (7.12) 

This relation establishes the equivalence between the reduced-rank GSC and the eigen- 
canceler [1]. The eigencanceler is a method that produces the minimum norm weight 
vector meeting the set of linear constraints, and subject to the additional constraint 
of orthogonality to the interference subspace (formed by the principal eigenvectors of 
the space-time covariance matrix). Since Q2Q^ = I/v — QiQf\ the eigencanceler is 
equivalent to the application of a rank reducing transformation T = Q2, where the 
columns of Q2 span the noise subspace of the covariance R. Indeed, (7.12) is obtained 
by using T = Q2 and ( 4.1) in (7.3). The eigencanceler requires that the partition of 
eigenvectors into Qi and Q2 be such that the desired signal lies mostly in the noise 
subspace (this is indeed the case when R is estimated from the secondary data). The 
output SNR is given by 

\i   =   sHQ2(QfRQ2)
_1Qfs 

<   AWx, (7.13) 

where 
/W = s^ChA^Qf s + sFQ2A2-1Qf s. (7.14) 

2. The N x (r + 1) matrix is given by T = [Qi,qr+i], i.e., it consists of the r principal 
components of the signal-plus-interference subspace, augmented with one of the 
eigenvectors of the noise subspace [62]. In this case T consists of the principal 
components of the Karhunen-Loeve transform. The output SNR is given by // = 
s^QiA^Qfs + s^qr+iAjT+iq^jS. Note that if the look direction is in the noise 
subspace of the transform T, i.e., THs = 0, there is no solution that meets the linear 
constraint in (7.2). This problem is circumvented in [66] by the augmentation of T 
with the vector s, [T, s] —» T. 

3. Similar to Case 3 of the GSC, the rank reducing transformation T may be constructed 
from the principal components of a fixed transform such as the DFT or the DCT. 

4. The columns of T may be designed using the cross-spectral metric approach. 

In conclusion of this section, when the covariance matrix R is known, a rank reducing 
transformation induces a loss in the SNR. In the next section, this loss will be incorporated 
in the performance evaluation of the case when the covariance is not known and is evaluated 
from the data. 
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7.2    Reduced Rank Processing with Unknown Covariance 
In practice, the space-time covariance matrix is not known and it needs to be estimated 
from the secondary data, as explained in the previous chapters. This is the application for 
which reduced rank methods are advantageous due to their improved statistical stability. 
Let the number of snapshots from the secondary dataset be equal to K. Then the estimated 
covariance matrix is given by R = £ £f=1 xfcxf. In this section, the performance of reduced- 
rank processors is analyzed as a function of the sample support K. 
With SMI, the full-rank MVB weight vector is given by w = R_1s. The CSNR can be 
expressed as 

fs^R^s)2 i ,„     N 
o = —^ U . (7.15) P     s^R-iRR^s s" R-!s 

The density of the conditioned SNR for the SMI method with Gaussian data has been 
characterized in [10], and is given by the beta distribution with parameters K and N, 

f (p) = B(N) = C (1 - pf-2 pK+1~N, (7.16) 

where C = T {K + 1) / (T {N - 1)T (K + 2 - N)), and T (K + 1) = K\ is the standard 
gamma function. The notation B(N) emphasizes the signal space parameter N of the beta 
distribution shown above. When a reduced-rank transformation T is applied to the data, 
the CSNR can be written: 

, . Jf^l !_, (7.17) 

where t = THs is an r x 1 vector, and E = THRT, E = TFRT are r x r matrices. Of interest 
is to determine the distribution of p for various reduced-rank methods. It is important to 
distinguish between two cases: (1) the transformation T is fixed, (2) the transformation T 
is data dependent. The former case applies when T is formed from the DFT or the DCT. 
The transformation T is also fixed when it is formed by eigenvectors of the true covariance 
R, but this case is of no great practical value as the assumption here is that R is not known. 
Rather, T is formed from the eigenvectors of the estimated covariance R and, as such, is 
data dependent. 
When T is fixed, (7.17) can be rewritten as follows: 

p = Prpb, (7-18) 

where pr is the reduced-rank CSNR, 

(t*E-H) 
2 

1 

» = t£-TsfiW-t -J(r)' (7-19) 

and pb is the bias in the optimal SNR introduced by the transformation T, 

t^E-H 
Pb s"R-V 

(7.20) 

Equations (7.18)-(7.20) clearly demonstrate the effect of reduced rank transformation on the 
SMI-MVB method. The linear transformation T preserves the Gaussian distribution of the 
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data, hence the reduced-rank CSNR, pr, has a beta distribution B(r) with parameters K and 
r. Improved statistical stability is evident in the higher CSNR values associated with pr. For 
example, for the full-rank SMI, E [p] =0.5 for K = 2N - 3 [10], while for the reduced-rank 
SMI, E [pr] = 0.5 for K = 2r — 3, i.e., fewer samples are required for the same performance 
level. The higher CSNR values due to improved statistical stability, are somewhat offset by 
the bias pb, which is the loss in the optimal SNR due to the rank reduction. This loss is the 
quantity p/pma.x analyzed in the previous section. The performance of the GSC processor 
with a fixed rank-reducing transformation is analyzed in [67]. 
The case when T is data dependent cannot be directly derived from the SMI distribution. 
The asymptotic density of the conditioned SNR for the eigencanceler (T consists of the noise 
eigenvectors of the estimated covariance) is derived in [1]. 

7.3    Numerical Results 
In this section are provided numerical results for several of the reduced-rank methods 
presented in previous sections. The simulation model used an Ns = 8 element array with 
Nt = 4 taps at each element. The clutter was located in the angular sector of 0 to 30 
degrees. The steering vector was set at 50 degrees, and at a normalized Doppler frequency 
of 0.4. The total input clutter-to-noise ratio (CNR) of the distributed clutter was 10 dB. 
In Figure 7.3, the distribution of p based on 20,000 runs is shown for several reduced-rank 
methods, as well as for full-rank SMI. The reduced-rank methods were: eigencanceler, DCT, 
DFT, and CSM based on the eigen-decomposition and implemented as a GSC. The number 
of principal components used to generate the results shown in the figure was r — 4 for 
all methods. The CSM and eigencanceler methods are shown to produce the highest 
CSNR's, with reduced-rank MVB based on the DCT and DFT providing slightly lower 
performance. All reduced-rank methods clearly outperform the full-rank SMI. Figure 7.4 
plots the average probability of detection based on 200 runs and a false alarm probability 
of 10-5. The figure illustrates the same trend as Figure 7.3; best detection performance 
is provided by the eigencanceler and CSM, followed by DCT and DFT (indistinguishable), 
and by the full-rank SMI. The effect of the rank order on the performance is illustrated in 
Figure 7.5. In the figure, the CSNR is plotted as a function of rank of the rank-reducing 
transformation. For all methods it seems that r = 4 is the optimal rank order (for the 
particular scenario considered). CSM provides slightly better performance when the rank 
is underestimated. The DCT transformation seems to be the least affected by overesti- 
mating the rank. Obviously, the rank has no effect on the SMI method. The effect of the 
CNR on performance is illustrated in Figure 7.6. The CSNR is plotted as a function of the 
input CNR. The CSNR is computed for a rank-reducing transformation with r = 4. As 
the CNR increases, the interference power spills over more than 3-4 principal values. Thus 
the rank reducing transformations are inadequate in capturing the interference power and 
performance is degraded. 

96 



12 - 

10   smi 

 eig 

-- dct 
8 x    dft 

■ - ■ • csm 
LL 

e e 
" 

4 

2 

n I H M '    M H 1« > 

0.1 0.2        0.3        0.4        0.5        0.6        0.7        0.8 
Conditioned SNR 

0.9 1 

Figure 7.3 Probability density of the CSNR. 

1  1 1           i                  '                  i 1         m   i i i ir 

0.9 

0.8 
/   / : 
/   f ."' 

0.7 /   f ■ 
c /    t ■' o /    / : 
ro0.6 - /    '  " " 
CD 
a /    / : 
"O.h >> 1    I : 
-O /    * ' 5 04 - Ji- 
g ll: 
a. /    I  ■"   smi 

0.3 /    l ■' 

1    * ■  eig 

0.2 /   l ■' 

/    ' •' 
/   * ■' J    / : 

--dct 

x    dft 

0.1  csm 

ri ^&--   , i 

10 15 20 25 
SNR 

30 35 

Figure 7.4 Probability of detection for reduced-rank methods. 

97 



1 

0.9 

i                      i 1 i i 1 

j' ^ 
'"*, ̂  

0.8 /    x — 
X *'«.T - _ _          ---^ /     / ^.          — —. — ^^-^^ — — — —   

/      l 
0.7 f        ' 

""•^~~---^ 
0.6 

*7         ' 0C -7        / 
»0.5, / Ix         i - 
o i          1 

i  I       i 
1      i 
i      i 

X                 X X 
0.4 

1      i   smi 
0.3 '1     / /    / 1 /  eig 

0.2 -- dct 

x    dtt 

~ 

0.1 

i                 i 

■ - ■ ■ csm 

i , 
6 8 

Order 
10 12 

Figure 7.5 Rank order. 

98 



10 15 20 
Input CNR in dB 

25 30 

Figure 7.6 CSNR vs CNR. 

99 



CHAPTER 8 

EIGENCANCELER APPLIED TO HPRF RADAR 

In airborne radar, ground clutter returns from all ranges and angles appear to be moving 
relative to the platform. These mainlobe and sidelobe clutter returns exist in the Doppler 
region given by ±2Vfc/c Hz, where V is the platform velocity, fc is the radar's carrier 
frequency, and c is the speed of light. The geometry for an airborne radar system is shown 
in Figure 8.1. A clutter patch seen by the radar at an azimuth angle <f> and an elevation 
(depression) angle 6 has a Doppler frequency fd = (2V/A) sin <^cos0 Hz, where A is the 
wavelength corresponding to the transmitted carrier frequency. Radar systems, for missions 
such as airborne early warning (AEW), may employ high pulse repetition frequency (HPRF) 
waveforms to enhance long-range detection of high closing-rate targets which appear in the 
clutter free region of the radar system's Doppler spectrum. However, due to the range- 
ambiguous nature of the HPRF waveform, strong near-range ground clutter returns received 
in the antenna sidelobes cannot be simply gated out and are, therefore, folded in with desired 
signal returns that fall within the Doppler bandwidth of the clutter. This chapter discusses 
the application of space time adaptive processing (STAP) techniques for clutter suppression 
in HPRF radar systems. 

Space-time processing is a multidimensional filtering approach that mitigates interference in 
range and Doppler simultaneously. STAP can improve the detection of low velocity targets 
in mainlobe clutter or small targets in sidelobe clutter. In recent years, STAP has been 
studied and applied mainly to low PRF (LPRF) radar [9, 61, 68, 69]. The application of 
STAP to the HPRF radar problem presents a unique set of challenges and differences from 
the traditional LPRF radar, which are discussed in the chapter. 
Three STAP approaches will be investigated. The first is the pseudoinverse sample matrix 
inversion (P-SMI) technique. With traditional SMI, the adaptive weight vector is computed 
by taking the inverse of the sample covariance matrix. In HPRF radar, the sample support is 
greatly reduced compared to LPRF due to range ambiguity effects. Hence the pseudoinverse 
of the covariance matrix is used. The second method investigated is the diagonally loaded 
SMI [70]. This method is traced back to the early 1980's with publications by Abramovich 
and Cheremisin [71, 72]. In this technique the singularity of the sample covariance matrix is 
overcome by diagonal loading. The last STAP technique investigated is the eigencanceler[l]. 
The different STAP techniques are evaluated through a number of performance measures 
such as output signal to clutter and noise ratio and probability of detection. 

8.1    Problem Statement 
As a result of the airborne radar platform motion, regions of ground clutter can compete 
in both range and Doppler with targets of interest. As illustrated in Figure 8.2, regions of 
competing clutter for LPRF airborne radars are at the intersections of the target range ring 
and iso-Dopplers ambiguous with the target Doppler. Classical STAP techniques which 
use range samples on either side of the target to form an estimate of the clutter covariance 
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Figure 8.1 Geometry of the airborne radar problem. 

Figure 8.2 Iso-Doppler, Iso-range ring map for LPRF radar. 
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Figure 8.3 Iso-Doppler, Iso-range ring map for HPRF radar. 

matrix have been shown to be effective in suppressing this competing clutter for LPRF 
radars [9, 69]. 
Unlike the LPRF problem, for HPRF airborne radars, regions of competing clutter lie along 
the iso-Doppler contour at points where the ambiguous range is the same as that of a target. 
This is shown schematically in Figure 8.3. Due to the range-ambiguous nature of the 
HPRF waveform, each range gate consists of the superposition of the returns from all visible 
ambiguous ranges. Therefore, regions of strong sidelobe clutter, located at relatively short 
ranges and steep grazing angles, cannot be gated out and are folded in with mainbeam target 
returns. Another issue of much importance is sample support. Due to the nature of the 
HPRF waveform, sample support for estimation of the clutter covariance matrix is limited 
to the number of range gates available in the radar system. This limited sample support 
can lead to ill-conditioning of the covariance matrix for classical STAP approaches, such as 
SMI. 
The application of innovative reduced rank STAP solutions, shown to outperform conven- 
tional STAP techniques [22,1, 7], is proposed to address the two problems of range ambiguity 
and limited sample support associated with HPRF radar systems. 

8.2    HPRF System's Definitions and Properties 
This section presents the system's definitions and requirements for the HPRF radar system 
discussed in this chapter. Also an explanation of the spectrum of the clutter seen by the 
airborne radar for such a system is presented. 

8.2.1    System's Definitions 
We use the same signal model presented in chapter 2, however, we define a few extra 
parameters that are necessary for the discussion of HPRF radar. 
The radar's unambiguous range is related to the PRF: 

Run = c/(2PRF). (8.1) 
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If the target's range extends beyond i?Un, the radar cannot measure the true range of the 
target. Consequently, target returns may be folded over close range clutter echoes. 
As a subsequence of (8.1), radar echoes will have an apparent range, i?app, and a true range 
which are be related by 

-Rapp = -Rtrue _ -Run[-Rtrue/-^un], (8-2) 

where the brackets denote integer part. The data vector xm consists of the sum of contri- 
butions of all the range cells folded onto the cell corresponding to index m. Also, the number 
of independent data samples equals the number of range cells in an unambiguous range 
interval. Let M be the number of range gates spanning the unambiguous range interval of 
the radar. The maximum likelihood estimate of the space-time covariance matrix is given 
again by 

m=l 

The matrix is clearly singular if K < N. The parameter K is controlled by the radar's range 
resolution which is a direct function of the system's bandwidth. 

8.2.2    Degrees of Freedom 
The number of the degrees of freedom that is needed for effective clutter cancelation is 
determined by the rank of the clutter covariance matrix. In a typical airborne scenario and 
a calibrated radar, eigen-decomposition, when applied to the covariance matrix, yields a few 
large eigenvalues while the rest are relatively small. The number of significant eigenvalues 
or equivalently the rank, can be predicted by the Landau-Pollak relation r = 2BT + 1, 
where B is the clutter bandwidth and T is the time across the filter structure. 
The Landau-Pollak relation can be applied to a space-time array as well. The rank of the 
space-time covariance matrix has been studied in [1, 69]. Here we provide a brief argument 
for illustrative purposes. For an array with elements at half-wavelength intervals, and a 
point clutter source at azimuth angle <f> with respect to the array normal and at elevation 
angle 0, a space-time sample is given by, 

_    eJ7r(n-l)sintf.cos0 eJ2Tr(k-\)u (34) 

where v is the point source Doppler frequency normalized with respect to the PRF. The 
maximum frequency space-time component is then 

Xnk    =    e;<r[(".-l)+2(".-D*»«], (8.5) 

where i/max = 2V/(X PRF) is the highest normalized Doppler component of the clutter 
returns. It follows that the number of space-time samples required to represent the clutter 
contributions is upper bounded 

r<   Ns + 2(Nt - l)iw (8.6) 

This is also the highest approximate rank of the clutter plus noise covariance matrix for 
high clutter-to-noise ratio. In the case of a HPRF radar, i/max < 1 since the clutter occupies 
only a fraction of the Doppler spectrum. Thus, the HPRF problem is of lower rank than an 
equivalent LPRF problem. 
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Figure 8.4 HPRF Clutter Intensity map. 

8.2.3    'J-Hook' Clutter 
In an airborne HPRF application, clutter enters the receiver primarily through the mainbeam 
and principal elevation sidelobes. This is illustrated in the clutter intensity plot, shown in 
Figure 8.4. It can be observed that at far ranges clutter returns are approximately parallel 
to iso-Doppler contours. This implies little variation in the Doppler frequency. The clutter 
ridge crosses increasingly more iso-Doppler contours as it gets closer to Nadir. This results in 
the characteristic 'J-Hook' curvature of the clutter ridge in the range-Doppler domain. The 
'J-Hook' is clearly visible on the range-Doppler plot shown in Figure 8.7 in the Numerical 
Analysis section. As this plot illustrates, for the HPRF waveform, most of the Doppler band 
is clutter free with mainlobe and sidelobe ground clutter returns located only in the Doppler 
region given by fd = ±2V/A. 

8.3    STAP Techniques 
This section describes the various STAP approaches used to combat clutter in HPRF radar. 

8.3.1    Pseudoinverse SMI 
As previously pointed out, the HPRF problem is characterized by low sample support which 
may often result in an ill-conditioned covariance matrix estimate R (defined in (8.3)). For 

such cases, the pseudoinverse R* = (R^RJ     Rff is substituted for R_1. The pseudoinverse 

SMI (P-SMI) weight vector is then given by 

w = R*i (8.7) 
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8.3.2 Diagonally Loaded SMI 
The diagonally loaded SMI (L-SMI) is a modification of the traditional SMI method in 
which a constant is added to the diagonal of the estimated covariance matrix R in order to 
improve numerical conditioning. This constant is referred to as the loading factor. In [73] it 
is suggested to choose a loading factor a such that a2 < a < Amin, where a2 is the noise 
power, and Amin denotes the smallest interference eigenvalue. The L-SMI weight vector is 
then given by 

w=(R + al)_1s. (8.8) 

The loading of the covariance matrix decreases the fluctuations of the small eigenvalues, 
which are predominantly noise eigenvalues, and as a result decreases fluctuations in w. 

8.3.3 The Eigencanceler 
The estimated covariance matrix of the clutter was obtained using (8.3). It has been shown 
in [1], and as was previously derived in chapter 3, that the eigencanceler's weight vector is 
given by 

w=(l-Q!Qf)s = Q2Q?s (8.9) 

where I, is the identity matrix. 

8.4    Numerical Analysis 
The simulation model assumed an Ns = 8 elements array with a CPI of length Nt = 64. 
The clutter was assumed to come from all elevation angles and was modeled to have a 
complex-valued Gaussian distribution with zero-mean and variance equal to the clutter-to- 
noise ratio (CNR). Attenuation due to free-space propagation was assumed proportional 
to RT3 , where i?true 1S true range °f tne ceu under test. The CNR was set to 60 dB. 
The radar parameters were assumed as follows: PRF = 25kHz, platform velocity V = 250 
m/s, platform altitude = 30,000 ft, and the transmitted frequency = 3.3 GHz. The target's 
range was 90 km, its Doppler frequency = 0.05xPRF, and the SNR = 48 dB. The radar's 
unambiguous range was about 6 km. 
Equations (8.7), (8.8), and (8.9) are used to calculate the space-time adaptive filter weights 
for the P-SMI, L-SMI and eigencanceler, respectively. Figure 8.5 shows the density functions 
of the conditioned signal-to-noise ratio (CSNR) for the three methods (the conditioning is 
on the realization of the weight vector, which, in turn, depends on the covariance matrix 
estimate). The term CSNR refers to the output effective SNR normalized by the optimal 
SNR (obtained from the application of the true covariance matrix). The application of the 
eigencanceler and L-SMI result in high values of the CSNR. Figure 8.6 shows the probability 
of detection of the three STAP techniques showing similar results as in Figure 8.5. The range 
ambiguous clutter map is shown in Figure 8.7. The clutter map post-processing is shown 
in Figures 8.8 and 8.9 for L-SMI and the eigencanceler respectively. The near range clutter 
masking the target has been rejected and the target is now evident. 
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Figure 8.8 Post-processing clutter using the Loaded SMI. 
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APPENDIX A 

Derivations of equations (5.25) and (5.26) 

This appendix provides the proof to (5.25) and (5.26). From (5.21), and through two 
consecutive applications of the matrix inversion lemma, one obtains a closed form expression 
for the inverse of the normalized covariance matrix: 

R-1 = I - 7,ss" - j^sf 

where *ys and 7,- are defined in section 3. The gain to be calculated is defined in (5.22). 
Consider the numerator and denominator of G, for the SMI weight vector in (5.23): 

NUM1 s^R^s 
2 

(A.l) 

= iPir(i-7.r (A.2) 

2 
s^s where the inner product between the presumed and true steering vectors is jyoa j 

•  2 

^   ■  2    , xß is the angle between the vectors as shown in Figure A.l, and it is assumed that 

s-^s; = 0. The denominator of the gain term is given by: 

DEN1   =   s^R-^-R-1! (A.3) 

=   sH(l-7sssH-7iSisf)2s (A.4) 

=   sH [l-7s (2 - 7s) ss" - 7i (2 - 7O Sisf ] s (A.5) 

9 

where R, = I + öf s,-sf. Defining \p2\2 = sHSi we obtain 

2 tr> \  I        |2 DEN1 = 1 - ls (2 - 7.) \Pl\* - 7l- (2 - 7i) \p2 

and relation (5.25) follows. 
For the eigencanceler from (5.24) we have: 

NUM2   =   \sH (i - 8,-sf) s|2 (A.6) 

=   IPil2 (A.7) 

and 

DEN2' =   sH (i - Sisf) Ri (i - s,-sf) s (A.8) 

=   1-hl2 (A.9) 

and relation (5.26) follows. 
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